Semi-Supervised Learning for Geotechnical Soil Property Estimation in Offshore Windfarm Sites

工作流程 海上风力发电 卷积神经网络 涡轮机 计算机科学 监督学习 深度学习 人工智能 人工神经网络 工程类 数据库 机械工程
作者
Haibin Di,Aria Abubakar
标识
DOI:10.2118/211836-ms
摘要

Abstract Site characterization and monitoring of the subsurface formations around wind turbine locations are crucial for reliable wind farm construction, operation and maintenance. In order to extract relevant information about subsurface soils, ultrahigh-resolution (UHR) seismic survey and geotechnical cone- penetration testing (CPT) is often acquired, processed, interpreted and integrated, which could be repeated over time for site monitoring purposes. Due to the size of the area to be investigated and the manual efforts to complete multiple steps in the traditional workflow, the turnaround time for soil property estimation in a wind farm site can be quite long. In this study we implement a semi-supervised learning workflow to automate the task, which integrates URH seismic and CPT logs through two convolutional neural networks (CNNs), with one for seismic denoising and feature engineering (SDFE) and the other for seismic-CPT integration (SCI), which reduces the difficulties in CNN training due to poor data quality and small data quantity. The two components are connected by implementing the encoder of the pretrained SDFE-CNN as part of the SCI-CNN encoder. As tested on a public wind farm site, the use of deep learning leads to promising results in terms of both quality and efficiency. The proposed workflow is also extensible to include additional information, such as structure and velocity models, for further constraining the SCI-CNN. Highlights: A semi-supervised learning workflow is proposed for soil property estimation from UHR seismic and CPT tests in a wind farm site,allows estimating the essential soil properties such as cone-tip resistance from post-stack UHR seismic as tested on a real windfarm site HKZ, andreduces the turnaround time of windfarm site characterization compared to traditional workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上好佳完成签到,获得积分10
2秒前
研友_Lw7OvL发布了新的文献求助10
2秒前
顺心山雁完成签到,获得积分10
3秒前
PJ应助hah采纳,获得20
5秒前
李爱国应助明亮盼望采纳,获得10
6秒前
李建勋完成签到,获得积分10
6秒前
iNk应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Xy应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
芝麻糊应助科研通管家采纳,获得10
10秒前
冰魂应助科研通管家采纳,获得30
10秒前
orixero应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
joybee完成签到,获得积分0
11秒前
16秒前
Fury完成签到 ,获得积分10
16秒前
怕孤单的安蕾完成签到,获得积分10
21秒前
一行白鹭上青天完成签到 ,获得积分10
21秒前
宁annie完成签到,获得积分10
22秒前
zzy完成签到 ,获得积分10
27秒前
蒽菲草草完成签到,获得积分10
28秒前
28秒前
Dr. Zhang发布了新的文献求助30
28秒前
所所应助lewisll采纳,获得10
29秒前
bianxm06发布了新的文献求助10
32秒前
潘啊潘完成签到 ,获得积分10
34秒前
junio完成签到 ,获得积分10
35秒前
35秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
skysleeper完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864070
求助须知:如何正确求助?哪些是违规求助? 3406372
关于积分的说明 10649455
捐赠科研通 3130325
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831656
科研通“疑难数据库(出版商)”最低求助积分说明 779990