已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computer vision framework for crack detection of civil infrastructure—A review

计算机科学 可用性(结构) 多样性(控制论) 风险分析(工程) 建筑工程 民用基础设施 钥匙(锁) 数据科学 计算机安全 人工智能 土木工程 医学 工程类
作者
Dihao Ai,Guiyuan Jiang,Siew-Kei Lam,Peilan He,Chengwu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105478-105478 被引量:122
标识
DOI:10.1016/j.engappai.2022.105478
摘要

Civil infrastructure (e.g., buildings, roads, underground tunnels) could lose its expected physical and functional conditions after years of operation. Timely and accurate inspection and assessment of such infrastructures are essential to ensure safety and serviceability, e.g., by preventing unsafe working conditions and hazards. Cracks, which are one of the most common distress, can indicate severe structural integrity issues that threaten the safety of the structure and people in the environment. As such, accurate, fast, and automatic detection of cracks on structure surfaces is a major issue for a variety of civil engineering applications. Due to advances in hardware data acquisition systems, significant progress has been made in the automatic detection and quantification of cracks in recent decades. This paper provides a comprehensive review of the research progress and prospects in computer vision frameworks for crack detection of civil infrastructures from multiple materials, including asphalt, concrete, and metal-like materials. The review encompasses major components of typical frameworks, i.e., data acquisition techniques, publicly available datasets, detection algorithms, and evaluation metrics. In particular, we provide a taxonomy of detection algorithms with a detailed discussion of the advantages, limitations, and application scenarios of the methods in each category, as well as the relationships between methods of different categories. We also discuss unsolved issues and key challenges in crack detection that could drive future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jacob258发布了新的文献求助10
2秒前
科目三应助neko采纳,获得30
3秒前
Mu丶tou完成签到,获得积分10
8秒前
16秒前
huihui发布了新的文献求助10
19秒前
赘婿应助李二牛采纳,获得10
21秒前
TYT发布了新的文献求助10
21秒前
鬲木发布了新的文献求助10
22秒前
慈善家发布了新的文献求助10
23秒前
无花果应助TYT采纳,获得10
26秒前
27秒前
张emo发布了新的文献求助10
32秒前
33秒前
yar应助JackWu采纳,获得10
34秒前
啵啵啵小太阳完成签到,获得积分10
36秒前
39秒前
糖醋排骨在逃完成签到,获得积分10
39秒前
Lucas应助cyh采纳,获得10
39秒前
SciGPT应助观鹤轩采纳,获得10
42秒前
酉灯发布了新的文献求助10
43秒前
鹅糖完成签到,获得积分10
44秒前
46秒前
47秒前
xiaofeixia完成签到 ,获得积分10
47秒前
49秒前
鹅糖发布了新的文献求助10
50秒前
51秒前
cyh完成签到,获得积分10
52秒前
单纯大侠发布了新的文献求助10
52秒前
包包发布了新的文献求助20
54秒前
drtianyunhong发布了新的文献求助100
55秒前
56秒前
56秒前
hhn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
香蕉觅云应助WANGCHU采纳,获得10
1分钟前
研友_VZG7GZ应助罗大海采纳,获得10
1分钟前
852应助单纯大侠采纳,获得10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897481
求助须知:如何正确求助?哪些是违规求助? 3441592
关于积分的说明 10822273
捐赠科研通 3166385
什么是DOI,文献DOI怎么找? 1749392
邀请新用户注册赠送积分活动 845306
科研通“疑难数据库(出版商)”最低求助积分说明 788622