纳米团簇
材料科学
法拉第效率
催化作用
电子转移
可逆氢电极
电流密度
过渡金属
电催化剂
化学工程
密度泛函理论
碳纤维
电极
电化学
纳米技术
无机化学
物理化学
工作电极
复合数
计算化学
有机化学
化学
物理
量子力学
复合材料
工程类
作者
Yanfang Song,Jianing Mao,Chang Zhu,Shoujie Li,Guihua Li,Xiao Dong,Zheng Jiang,Wei Chen,Wei Wei
标识
DOI:10.1021/acsami.2c23095
摘要
Transition metal catalyst-based electrocatalytic CO2 reduction is a highly attractive approach to fulfill the renewable energy storage and a negative carbon cycle. However, it remains a great challenge for the earth-abundant VIII transition metal catalysts to achieve highly selective, active, and stable CO2 electroreduction. Herein, bamboo-like carbon nanotubes that anchor both Ni nanoclusters and atomically dispersed Ni–N–C sites (NiNCNT) are developed for exclusive CO2 conversion to CO at stable industry-relevant current densities. Through optimization of gas–liquid–catalyst interphases via hydrophobic modulation, NiNCNT exhibits as high as Faradaic efficiency (FE) of 99.3% for CO formation at a current density of −300 mA·cm–2 (−0.35 V vs reversible hydrogen electrode (RHE)), and even an extremely high CO partial current density (jCO) of −457 mA·cm–2 corresponding to a CO FE of 91.4% at −0.48 V vs RHE. Such superior CO2 electroreduction performance is ascribed to the enhanced electron transfer and local electron density of Ni 3d orbitals upon incorporation of Ni nanoclusters, which facilitates the formation of the COOH* intermediate.
科研通智能强力驱动
Strongly Powered by AbleSci AI