The application of health recommender systems based on knowledge graph: a scoping review

推荐系统 计算机科学 医疗保健 图形 精确性和召回率 领域(数学) 召回 数据科学 人工智能 情报检索 心理学 数学 理论计算机科学 经济 经济增长 纯数学 认知心理学
作者
Xu Zhang,Ming Yi,Yan Sun,Shuyu Han,Wenmin Zhang,Zhiwen Wang
标识
DOI:10.1097/nr9.0000000000000014
摘要

Abstract Background: Tailored knowledge graph-based recommender systems (KGRSs) have been demonstrated to be able to provide accurate and effective health recommendations to users, and thus significantly reduce health care costs. They are now strongly recommended to be applied in the health care field. Objective: This scoping review aims to identify the current application of KGRSs, their target users and performance metrics, and the potential limitations of implementing health recommender systems in clinical practice. Methods: A review of the studies published from inception to November 1, 2022 was conducted, using key search terms in 6 scientific databases to identify health recommender systems based on knowledge graph technology. Key information from the included studies was extracted and charted. The scoping review was reported following the PRISMA Extension for Scoping Reviews. Result: We included 16 studies and 5 grants totally about the health recommender systems based on knowledge graph technology. They were used in different health areas: traditional Chinese medicine, health management, disease-related decision support, diet, and nutrition recommendations. Among them, 6 studies were for the general public and 6 were for physicians. A total of 13 (81.25%) studies evaluated the KGRS using performance metrics, such as accuracy, recall, F1 score, and area under the curve. All studies pointed out the limitations of the recommender systems and provided directions for their subsequent optimization and improvement. Conclusion: This review describes the state-of-the-art and potential limitations of KGRS used in the health care field. This novel approach has been proven to be effective in overcoming the drawbacks of traditional algorithms, helping users filter massive amounts of data to find out the personalized information they need. Its great potential in digital health needs to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助cst采纳,获得10
1秒前
爱学习的太阳完成签到,获得积分20
2秒前
顺利毕业发布了新的文献求助10
2秒前
5秒前
开心白凝完成签到,获得积分10
5秒前
11秒前
Hathaway完成签到,获得积分10
12秒前
Zyl完成签到 ,获得积分10
14秒前
14秒前
15秒前
Jeff完成签到,获得积分10
16秒前
浩然完成签到,获得积分10
16秒前
oligo完成签到 ,获得积分10
20秒前
zikncy发布了新的文献求助10
20秒前
香蕉觅云应助轻松笙采纳,获得10
21秒前
Orange应助somous采纳,获得10
21秒前
23秒前
感性的寄真完成签到 ,获得积分10
24秒前
26秒前
26秒前
27秒前
领导范儿应助青橘短衫采纳,获得10
27秒前
乐乐应助水的很厉害采纳,获得10
30秒前
30秒前
坚定的海白完成签到 ,获得积分10
31秒前
31秒前
阿南发布了新的文献求助10
31秒前
强健的雅绿完成签到,获得积分10
32秒前
轻松笙发布了新的文献求助10
32秒前
FashionBoy应助Petrichor采纳,获得10
32秒前
32秒前
yu完成签到 ,获得积分10
33秒前
粒子一号完成签到,获得积分10
35秒前
somous发布了新的文献求助10
35秒前
顺利毕业完成签到,获得积分10
37秒前
38秒前
洲洲完成签到 ,获得积分10
39秒前
归尘发布了新的文献求助10
41秒前
41秒前
上官若男应助Ccc采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522