氮氧化物
燃烧
选择性催化还原
氨
废物管理
催化燃烧
化石燃料
环境科学
氨生产
催化作用
工艺工程
化学
工程类
有机化学
生物化学
作者
Young‐Kwon Park,Beom‐Sik Kim
标识
DOI:10.1016/j.cej.2023.141958
摘要
Ammonia is an attractive fuel candidate that can reduce fossil fuel consumption and CO2 emissions owing to its reliable combustion properties, amenability to mass production from renewable resources, and straightforward storage and transportation through existing commercial infrastructure. However, ammonia combustion releases considerable amounts of NOx into the environment, causing significant air quality problems and health issues. Therefore, appropriate deNOx techniques must be established to suppress environmental NOx emissions. However, because ammonia combustion has not yet been commercialized, the composition of ammonia-fueled exhaust gas cannot be readily determined, and existing deNOx technologies have not been proven to work successfully under practical conditions. Therefore, recent studies on mitigating the NOx emissions from different ammonia combustion processes are explored in this review. Moreover, applicable catalytic deNOx technologies, including selective catalytic reduction of NOx and catalytic N2O decomposition, are comprehensively scrutinized, with particular emphasis on catalytic materials and their reaction mechanisms. Furthermore, catalyst design considerations and options for each catalytic process are briefly analyzed. Finally, the current technical challenges in this field and future research directions are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI