材料科学
阴极
烧结
相(物质)
化学工程
结构稳定性
水分
离子
吸附
相变
降级(电信)
化学
物理化学
冶金
热力学
复合材料
有机化学
电信
物理
结构工程
计算机科学
工程类
作者
Siqi Yuan,Lei Yu,Guannan Qian,Yingying Xie,Penghui Guo,Guijia Cui,Jun Ma,Xiangyu Ren,Zhixin Xu,Sang‐Jun Lee,Jun‐Sik Lee,Yijin Liu,Yang Ren,Linsen Li,Guoqiang Tan,Xiao‐Zhen Liao
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-02-22
卷期号:23 (5): 1743-1751
被引量:43
标识
DOI:10.1021/acs.nanolett.2c04465
摘要
P2-Na0.67Ni0.33Mn0.67O2 represents a promising cathode for Na-ion batteries, but it suffers from severe structural degradation upon storing in a humid atmosphere and cycling at a high cutoff voltage. Here we propose an in situ construction to achieve simultaneous material synthesis and Mg/Sn cosubstitution of Na0.67Ni0.33Mn0.67O2 via one-pot solid-state sintering. The materials exhibit superior structural reversibility and moisture insensitivity. In-operando XRD reveals an essential correlation between cycling stability and phase reversibility, whereas Mg substitution suppressed the P2-O2 phase transition by forming a new Z phase, and Mg/Sn cosubstitution enhanced the P2-Z transition reversibility benefiting from strong Sn-O bonds. DFT calculations disclosed high chemical tolerance to moisture, as the adsorption energy to H2O was lower than that of the pure Na0.67Ni0.33Mn0.67O2. A representative Na0.67Ni0.23Mg0.1Mn0.65Sn0.02O2 cathode exhibits high reversible capacities of 123 mAh g-1 (10 mA g-1), 110 mAh g-1 (200 mA g-1), and 100 mAh g-1 (500 mA g-1) and a high capacity retention of 80% (500 mA g-1, 500 cycles).
科研通智能强力驱动
Strongly Powered by AbleSci AI