A classification model for detection of ductal carcinoma in situ by Fourier transform infrared spectroscopy based on deep structured semantic model

化学 人工智能 谱线 模式识别(心理学) 相似性(几何) 傅里叶变换 光谱学 特征(语言学) 人工神经网络 计算机科学 数学 物理 数学分析 图像(数学) 天文 语言学 哲学 量子力学
作者
Yu Du,Fei Xie,Guohua Wu,Chen Peng,Yang Yang,Yang Liu,Longfei Yin,Shu Wang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1251: 340991-340991 被引量:7
标识
DOI:10.1016/j.aca.2023.340991
摘要

At present, deep learning is widely used in spectral data processing. Deep learning requires a large amount of data for training, while the collection of biological serum spectra is limited by sample numbers and labor costs, so it is impractical to obtain a large amount of serum spectral data for disease detection. In this study, we propose a spectral classification model based on the deep structured semantic model (DSSM) and successfully apply it to Fourier Transform Infrared (FT-IR) spectroscopy for ductal carcinoma in situ (DCIS) detection. Compared with the traditional deep learning model, we match the spectral data into positive and negative pairs according to whether the spectra are from the same category. The DSSM structure is constructed by extracting features according to the spectral similarity of spectra pairs. This new construction model increases the data amount used for model training and reduces the dimension of spectral data. Firstly, the FT-IR spectra are paired. The spectra pairs are labeled as positive pairs if they come from the same category, and the spectra pairs are labeled as negative pairs if they come from different categories. Secondly, two spectra in each spectra pair are put into two deep neural networks of the DSSM structure separately. Then the spectral similarity between the output feature maps of two deep neural networks is calculated. The DSSM structure is trained by maximizing the conditional likelihood of the spectra pairs from the same category. Thirdly, after the training of DSSM is done, the training set and testing set are input into two deep neural networks separately. The output feature maps of the training set are put into the reference library. Lastly, the k-nearest neighbor (KNN) model is used for classification according to Euclidean distances between the output feature map of each unknown sample to the reference library. The category of the unknown sample is judged according to the categories of k nearest samples. We also use principal component analysis (PCA) to reduce dimension for comparison. The accuracies of the KNN model, principal component analysis-k nearest neighbor (PCA-KNN) model, and deep structured semantic model-k nearest neighbor (DSSM-KNN) model are 78.8%, 72.7%, and 97.0%, which proves that our proposed model has higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心盼海完成签到,获得积分10
刚刚
天天发布了新的文献求助10
刚刚
子川完成签到,获得积分10
刚刚
yin完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
执着的草丛完成签到,获得积分10
2秒前
3秒前
不安雪一发布了新的文献求助10
3秒前
4秒前
丘比特应助千葉采纳,获得10
5秒前
阿里嘎多发布了新的文献求助10
5秒前
6秒前
6秒前
Chen完成签到,获得积分10
6秒前
man完成签到,获得积分10
7秒前
G2023na发布了新的文献求助20
7秒前
小青椒应助shinian采纳,获得10
7秒前
善学以致用应助shinian采纳,获得10
7秒前
贝虞姝发布了新的文献求助10
7秒前
Lars完成签到 ,获得积分10
7秒前
9秒前
希望天下0贩的0应助南北采纳,获得10
10秒前
黑YA发布了新的文献求助10
11秒前
慕青应助gengwenjing采纳,获得10
12秒前
12秒前
hao123发布了新的文献求助10
12秒前
随遇而安完成签到,获得积分10
12秒前
幽默霆完成签到,获得积分10
14秒前
ding应助wise111采纳,获得10
14秒前
15秒前
16秒前
桐桐应助明亮荔枝采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
不安雪一完成签到,获得积分20
18秒前
万能图书馆应助幽默霆采纳,获得10
18秒前
大强发布了新的文献求助10
19秒前
19秒前
SciGPT应助阿里嘎多采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595