亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups

医学 冲程(发动机) 一致性 队列 弗雷明翰风险评分 人口学 队列研究 弗雷明翰心脏研究 社区动脉粥样硬化风险 疾病 老年学 内科学 机械工程 工程类 社会学
作者
Chuan Hong,Michael Pencina,Daniel Wojdyla,Jennifer L. Hall,Suzanne E. Judd,Michael P. Cary,Matthew Engelhard,Samuel I. Berchuck,Ying Xian,Ralph B. D’Agostino,George Howard,Brett Kissela,Ricardo Henao
出处
期刊:JAMA [American Medical Association]
卷期号:329 (4): 306-306 被引量:55
标识
DOI:10.1001/jama.2022.24683
摘要

Importance Stroke is the fifth-highest cause of death in the US and a leading cause of serious long-term disability with particularly high risk in Black individuals. Quality risk prediction algorithms, free of bias, are key for comprehensive prevention strategies. Objective To compare the performance of stroke-specific algorithms with pooled cohort equations developed for atherosclerotic cardiovascular disease for the prediction of new-onset stroke across different subgroups (race, sex, and age) and to determine the added value of novel machine learning techniques. Design, Setting, and Participants Retrospective cohort study on combined and harmonized data from Black and White participants of the Framingham Offspring, Atherosclerosis Risk in Communities (ARIC), Multi-Ethnic Study for Atherosclerosis (MESA), and Reasons for Geographical and Racial Differences in Stroke (REGARDS) studies (1983-2019) conducted in the US. The 62 482 participants included at baseline were at least 45 years of age and free of stroke or transient ischemic attack. Exposures Published stroke-specific algorithms from Framingham and REGARDS (based on self-reported risk factors) as well as pooled cohort equations for atherosclerotic cardiovascular disease plus 2 newly developed machine learning algorithms. Main Outcomes and Measures Models were designed to estimate the 10-year risk of new-onset stroke (ischemic or hemorrhagic). Discrimination concordance index (C index) and calibration ratios of expected vs observed event rates were assessed at 10 years. Analyses were conducted by race, sex, and age groups. Results The combined study sample included 62 482 participants (median age, 61 years, 54% women, and 29% Black individuals). Discrimination C indexes were not significantly different for the 2 stroke-specific models (Framingham stroke, 0.72; 95% CI, 0.72-073; REGARDS self-report, 0.73; 95% CI, 0.72-0.74) vs the pooled cohort equations (0.72; 95% CI, 0.71-0.73): differences 0.01 or less ( P values >.05) in the combined sample. Significant differences in discrimination were observed by race: the C indexes were 0.76 for all 3 models in White vs 0.69 in Black women (all P values <.001) and between 0.71 and 0.72 in White men and between 0.64 and 0.66 in Black men (all P values ≤.001). When stratified by age, model discrimination was better for younger (<60 years) vs older (≥60 years) adults for both Black and White individuals. The ratios of observed to expected 10-year stroke rates were closest to 1 for the REGARDS self-report model (1.05; 95% CI, 1.00-1.09) and indicated risk overestimation for Framingham stroke (0.86; 95% CI, 0.82-0.89) and pooled cohort equations (0.74; 95% CI, 0.71-0.77). Performance did not significantly improve when novel machine learning algorithms were applied. Conclusions and Relevance In this analysis of Black and White individuals without stroke or transient ischemic attack among 4 US cohorts, existing stroke–specific risk prediction models and novel machine learning techniques did not significantly improve discriminative accuracy for new-onset stroke compared with the pooled cohort equations, and the REGARDS self-report model had the best calibration. All algorithms exhibited worse discrimination in Black individuals than in White individuals, indicating the need to expand the pool of risk factors and improve modeling techniques to address observed racial disparities and improve model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘1发布了新的文献求助10
7秒前
可可完成签到 ,获得积分10
10秒前
mark163完成签到,获得积分10
50秒前
k001boyxw完成签到,获得积分10
1分钟前
超男完成签到 ,获得积分10
1分钟前
腼腆的馒头完成签到,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
潘1发布了新的文献求助10
1分钟前
仔wang完成签到,获得积分10
1分钟前
Mr.Sui完成签到,获得积分10
2分钟前
可爱的函函应助潘1采纳,获得10
2分钟前
2分钟前
潘1发布了新的文献求助10
2分钟前
MGraceLi_sci完成签到,获得积分10
3分钟前
朱佳宁完成签到 ,获得积分10
4分钟前
4分钟前
慕青应助诺一44采纳,获得10
5分钟前
5分钟前
诺一44发布了新的文献求助10
5分钟前
5分钟前
7分钟前
7分钟前
7分钟前
Boren完成签到,获得积分10
8分钟前
嘟嘟嘟嘟完成签到 ,获得积分10
8分钟前
桐桐应助阁主采纳,获得10
8分钟前
lovelife完成签到,获得积分10
10分钟前
大个应助mewharper采纳,获得30
10分钟前
10分钟前
mewharper发布了新的文献求助30
10分钟前
搜集达人应助Earn采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
科研通AI5应助科研通管家采纳,获得10
11分钟前
mark163发布了新的文献求助10
11分钟前
mewharper完成签到,获得积分10
11分钟前
12分钟前
Earn发布了新的文献求助10
12分钟前
13分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
MRI Parameters and Positioning 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4155949
求助须知:如何正确求助?哪些是违规求助? 3691707
关于积分的说明 11658867
捐赠科研通 3383124
什么是DOI,文献DOI怎么找? 1856339
邀请新用户注册赠送积分活动 917809
科研通“疑难数据库(出版商)”最低求助积分说明 831154