Dual-Modal Information Bottleneck Network for Seizure Detection

计算机科学 模态(人机交互) 光谱图 瓶颈 人工智能 灵敏度(控制系统) 卷积神经网络 模式识别(心理学) 特征(语言学) 对偶(语法数字) 钥匙(锁) 情态动词 编码(集合论) 脑电图 水准点(测量) 模式 地理 社会科学 大地测量学 程序设计语言 高分子化学 社会学 化学 集合(抽象数据类型) 嵌入式系统 艺术 哲学 工程类 文学类 精神科 语言学 计算机安全 电子工程 心理学
作者
Jiale Wang,Xinting Ge,Yunfeng Shi,Mengxue Sun,Qingtao Gong,Haipeng Wang,Wenhui Huang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (01) 被引量:22
标识
DOI:10.1142/s0129065722500617
摘要

In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得20
2秒前
2秒前
左彦完成签到,获得积分10
2秒前
清爽老九发布了新的文献求助10
3秒前
3秒前
TRISTE完成签到 ,获得积分20
4秒前
lwh104完成签到,获得积分10
4秒前
慕青应助松月采纳,获得10
4秒前
科研通AI5应助Yuchaoo采纳,获得10
5秒前
奶冻发布了新的文献求助10
6秒前
lrh发布了新的文献求助10
6秒前
7秒前
晚风发布了新的文献求助10
9秒前
TRISTE发布了新的文献求助10
10秒前
10秒前
清秀夏寒完成签到 ,获得积分10
11秒前
宋向荣完成签到 ,获得积分10
12秒前
善学以致用应助llzuo采纳,获得10
12秒前
13秒前
13秒前
14秒前
15秒前
Zhaoli发布了新的文献求助30
15秒前
高高的语海完成签到,获得积分20
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836546
求助须知:如何正确求助?哪些是违规求助? 3378791
关于积分的说明 10506233
捐赠科研通 3098534
什么是DOI,文献DOI怎么找? 1706564
邀请新用户注册赠送积分活动 821075
科研通“疑难数据库(出版商)”最低求助积分说明 772431