Reinforcement Learning-Based Prescribed Performance Motion Control of Pneumatic Muscle Actuated Robotic Arms With Measurement Noises

控制理论(社会学) 工作区 计算机科学 稳健性(进化) 强化学习 控制工程 机器人 控制器(灌溉) 工程类 控制(管理) 人工智能 农学 生物化学 生物 基因 化学
作者
Gendi Liu,Ning Sun,Tong Yang,Yongchun Fang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 1801-1812 被引量:19
标识
DOI:10.1109/tsmc.2022.3207575
摘要

Featured with high power density, excellent flexibility, shock absorption capacity, etc., pneumatic muscles (PMs) promote the development of exoskeleton robots and rehabilitation equipment. However, the complex nonlinearities of PMs limit efficiency optimization in closed-loop control, while the force-displacement coupling, soft materials, deficient workspace, etc., make it more difficult to simultaneously increase motion speeds and ensure the safety of multiple PM-actuated (PMA) robots. Although force sensors can currently be replaced by applying state estimation techniques, the amplification effects of measurement noises still compromise control accuracy and stability in practice. To this end, this article proposes a reinforcement learning-based robust motion control method with the prescribed performance, which achieves efficient and satisfactory tracking control for PMA robotic arms. In particular, by elaborately incorporating an integral term, a robust generalized proportional integral observer is used to eliminate measurement noises. Meanwhile, by using an actor–critic network to optimize control performance, an error-transformation-based continuous controller is designed to guarantee the uniformly ultimately boundedness of tracking errors. Compared with most existing methods, this article provides the first solution to restrict the entire transient and steady-state performance of PMA robotic arms, improve the noise suppression capability, and optimize the control efficiency simultaneously. Finally, complete stability analysis based on Lyapunov techniques is provided, and several groups of hardware experiments demonstrate the practicability and robustness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默存完成签到,获得积分10
1秒前
司连喜完成签到,获得积分20
1秒前
Gakay发布了新的文献求助10
2秒前
hkh发布了新的文献求助10
3秒前
傣妹纸如裴洱完成签到,获得积分10
3秒前
ccq发布了新的文献求助10
3秒前
fosca完成签到,获得积分10
7秒前
9秒前
keleboys完成签到 ,获得积分10
10秒前
研友_ngqjz8完成签到,获得积分10
11秒前
CC完成签到,获得积分10
13秒前
小张同学完成签到,获得积分10
14秒前
bc应助yyou采纳,获得10
15秒前
CC发布了新的文献求助10
15秒前
谢富杰发布了新的文献求助10
19秒前
阳光的成风完成签到,获得积分10
19秒前
21秒前
橙汁得配曼妥思完成签到 ,获得积分10
23秒前
24秒前
晶晶发布了新的文献求助10
24秒前
lijunlhc完成签到,获得积分10
26秒前
shi发布了新的文献求助10
27秒前
huhao完成签到,获得积分20
28秒前
33秒前
华仔应助huhao采纳,获得20
33秒前
36秒前
41秒前
41秒前
科研通AI5应助科研通管家采纳,获得30
41秒前
段段砖应助科研通管家采纳,获得10
41秒前
完美世界应助科研通管家采纳,获得10
41秒前
42秒前
我是老大应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
天天快乐应助科研通管家采纳,获得10
42秒前
脑洞疼应助科研通管家采纳,获得10
42秒前
深情安青应助科研通管家采纳,获得10
42秒前
小马甲应助科研通管家采纳,获得10
42秒前
英姑应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275