材料科学
钙钛矿(结构)
卤化物
量子点
碳纳米管
光伏
层状结构
带隙
三卤化物
二极管
纳米技术
结晶学
光电子学
无机化学
复合材料
化学
生物
光伏系统
生态学
作者
Reza J. Kashtiban,Christopher E. Patrick,Quentin M. Ramasse,Richard I. Walton,Jeremy Sloan
标识
DOI:10.1002/adma.202208575
摘要
Halide perovskite structures are revolutionizing the design of optoelectronic materials, including solar cells, light-emitting diodes, and photovoltaics when formed at the quantum scale. Four isolated sub-nanometer, or picoscale, halide perovskite structures formed inside ≈1.2-1.6 nm single-walled carbon nanotubes (SWCNTs) by melt insertion from CsPbBr3 and lead-free CsSnI3 are reported. Three directly relate to the ABX3 perovskite archetype while a fourth is a perovskite-like lamellar structure with alternating Cs4 and polyhedral Sn4 Ix layers. In ≈1.4 nm-diameter SWCNTs, CsPbBr3 forms Cs3 PbII Br5 nanowires, one ABX3 unit cell in cross section with the Pb2+ oxidation state maintained by ordered Cs+ vacancies. Within ≈1.2 nm-diameter SWCNTs, CsPbBr3 and CsSnI3 form inorganic-polymer-like bilayer structures, one-fourth of an ABX3 unit cell in cross section with systematically reproduced ABX3 stoichiometry. Producing these smallest halide perovskite structures at their absolute synthetic cross-sectional limit enables quantum confinement effects with first-principles calculations demonstrating bandgap widening compared to corresponding bulk structural forms.
科研通智能强力驱动
Strongly Powered by AbleSci AI