Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET

医学 前列腺癌 无线电技术 适宜性标准 双雷达 前列腺 多参数磁共振成像 放射科 癌症 肿瘤科 内科学 乳腺癌 乳腺摄影术
作者
Kevin Leung,Steven P. Rowe,Jeffrey P. Leal,Saeed Ashrafinia,Mohammad Salehi Sadaghiani,Hyun Woo Chung,Pejman Dalaie,R. Tulbah,Yafu Yin,Ryan VanDenBerg,Rudolf A. Werner,Kenneth J. Pienta,Michael A. Gorin,Yong Du,Martin G. Pomper
出处
期刊:EJNMMI research [Springer Science+Business Media]
卷期号:12 (1) 被引量:26
标识
DOI:10.1186/s13550-022-00948-1
摘要

Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer (PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level and patient-level classification on PSMA PET images of patients with PCa. This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [18F]DCFPyL PET/CT scans were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical significance was determined using a two-tailed t test. PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The framework yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classification, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa consistent with the PSMA-RADS framework. The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET images. The framework was interpretable and provided confidence and probability scores that may assist physicians in making more informed clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
目测不纯完成签到,获得积分10
刚刚
1秒前
上官若男应助8848采纳,获得10
2秒前
许菁完成签到,获得积分10
4秒前
哈基米德应助周杰采纳,获得20
6秒前
7秒前
7秒前
10秒前
10秒前
14秒前
思源应助张秋雨采纳,获得10
15秒前
8848发布了新的文献求助10
15秒前
ruofanfan发布了新的文献求助30
16秒前
19秒前
20秒前
兰兰发布了新的文献求助10
20秒前
Akim应助tubby采纳,获得10
21秒前
你好你好完成签到 ,获得积分10
22秒前
23秒前
脸小呆呆发布了新的文献求助10
24秒前
小赖皮猪完成签到,获得积分10
26秒前
cocofan完成签到 ,获得积分10
26秒前
搜集达人应助雨中尘埃采纳,获得10
29秒前
tubby完成签到,获得积分10
29秒前
超级的妙晴完成签到 ,获得积分10
30秒前
Liufgui应助雨柏采纳,获得50
31秒前
32秒前
32秒前
33秒前
34秒前
35秒前
脑洞疼应助plant采纳,获得10
35秒前
一块小饼干完成签到,获得积分10
36秒前
36秒前
充电宝应助G1234采纳,获得10
37秒前
张秋雨发布了新的文献求助10
39秒前
maningtian1发布了新的文献求助30
39秒前
shiyin发布了新的文献求助10
40秒前
csr发布了新的文献求助10
41秒前
41秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103469
求助须知:如何正确求助?哪些是违规求助? 3641171
关于积分的说明 11538483
捐赠科研通 3349813
什么是DOI,文献DOI怎么找? 1840540
邀请新用户注册赠送积分活动 907555
科研通“疑难数据库(出版商)”最低求助积分说明 824725