Hyperparameter-Free Localized Simple Multiple Kernel K-Means With Global Optimum

超参数 聚类分析 计算机科学 核(代数) 水准点(测量) 数学优化 最大化 算法 人工智能 数学 大地测量学 组合数学 地理
作者
Xinwang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:13
标识
DOI:10.1109/tpami.2022.3233635
摘要

The newly proposed localized simple multiple kernel k-means (SimpleMKKM) provides an elegant clustering framework which sufficiently considers the potential variation among samples. Although achieving superior clustering performance in some applications, we observe that it is required to pre-specify an extra hyperparameter, which determines the size of the localization. This greatly limits its availability in practical applications since there is a little guideline to set a suitable hyperparameter in clustering tasks. To overcome this issue, we firstly parameterize a neighborhood mask matrix as a quadratic combination of a set of pre-computed base neighborhood mask matrices, which corresponds to a group of hyperparameters. We then propose to jointly learn the optimal coefficient of these neighborhood mask matrices together with the clustering tasks. By this way, we obtain the proposed hyperparameter-free localized SimpleMKKM, which corresponds to a more intractable minimization-minimization-maximization optimization problem. We rewrite the resultant optimization as a minimization of an optimal value function, prove its differentiability, and develop a gradient based algorithm to solve it. Furthermore, we theoretically prove that the obtained optimum is the global one. Comprehensive experimental study on several benchmark datasets verifies its effectiveness, comparing with several state-of-the-art counterparts in the recent literature. The source code for hyperparameter-free localized SimpleMKKM is available at https://github.com/xinwangliu/SimpleMKKMcodes/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀千兰完成签到,获得积分10
刚刚
充电宝应助wqmdd采纳,获得10
1秒前
2秒前
飘逸的问晴发布了新的文献求助100
2秒前
小二郎应助怕孤单的平卉采纳,获得10
3秒前
安子完成签到 ,获得积分10
3秒前
英俊的铭应助JIE采纳,获得10
3秒前
嘚嘚嘚发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
共享精神应助ray采纳,获得10
6秒前
精灵夜雨完成签到,获得积分10
6秒前
Soey发布了新的文献求助10
7秒前
linmo发布了新的文献求助10
8秒前
浮游应助任婷采纳,获得10
9秒前
zc完成签到,获得积分10
9秒前
9秒前
完美世界应助田一点采纳,获得10
10秒前
元子发布了新的文献求助10
10秒前
无心的柚子应助ykiiii采纳,获得30
12秒前
丰知然应助linmo采纳,获得10
14秒前
16秒前
Jasper应助乐观迎荷采纳,获得10
16秒前
E3D2C完成签到,获得积分20
19秒前
asdf完成签到 ,获得积分10
19秒前
20秒前
ray发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
科目三应助wqmdd采纳,获得10
24秒前
Condor完成签到,获得积分10
24秒前
24秒前
E3D2C发布了新的文献求助10
26秒前
传奇3应助田一点采纳,获得10
26秒前
cldg发布了新的文献求助10
26秒前
26秒前
26秒前
ding应助科研小白采纳,获得10
27秒前
28秒前
科研通AI6应助Nikki采纳,获得30
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563896
关于积分的说明 14292012
捐赠科研通 4488579
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448615
关于科研通互助平台的介绍 1424244