Permeation Barriers Grown by Atomic Layer Deposition Endow Non-Fullerene Organic Solar Cells with Damp-Heat Resilience

材料科学 富勒烯 渗透 图层(电子) 弹性(材料科学) 原子层沉积 有机太阳能电池 潮湿 沉积(地质) 纳米技术 化学工程 复合材料 聚合物 有机化学 古生物学 化学 遗传学 物理 沉积物 气象学 工程类 生物
作者
Florian Zimmermann,Pang Wang,Christian Tückmantel,Timo Maschwitz,R. Heiderhoff,Kai Oliver Brinkmann,Thomas Riedl
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c03977
摘要

Organic solar cells (OSCs) based on nonfullerene acceptors have seen tremendous progress recently, which qualifies them as a serious next-generation photovoltaic technology. However, their long-term stability is still a key issue that needs to be addressed on the way to commercialization. For relevant long-term stability, gas diffusion barriers are needed to protect the OSCs against ambient gases such as oxygen and moisture. Here, we explore gas diffusion barriers grown by atomic layer deposition (ALD) and demonstrate that aluminum oxide barriers grown at 80 °C afford OSCs that can be operated in the maximum power point in ambient air for more than 1000 h without notable degradation. At the same time, we show that under damp heat conditions, i.e., elevated temperature and humidity, better barriers are needed, that require growth temperatures of >80 °C, which are not tolerated by our standard p-i-n type OSCs. We significantly improve the thermal stability of our OSCs by the introduction of aluminum-doped zinc oxide nanoparticles (AZO-NPs) as electron extraction layers. OSCs using AZO-NPs are shown to withstand the ALD growth of barrier layers up to 120 °C. Finally, by introducing an aluminum oxide/titanium oxide multilayer barrier, we successfully prevent the corrosion of neat aluminum oxide under damp heat conditions, and OSCs encapsulated with these nanolaminates retain above 80% of their initial efficiency after 1000 h at 70 °C/70% relative humidity. Our results contribute to the improved stability of NFA OSCs even in harsh environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
利利是是发布了新的文献求助10
2秒前
SciGPT应助SMOONNY采纳,获得10
2秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
3秒前
橘子s完成签到,获得积分10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
ding应助科研通管家采纳,获得30
5秒前
情怀应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
secbox完成签到,获得积分10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得20
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
batmanrobin完成签到,获得积分10
8秒前
healthy完成签到,获得积分10
8秒前
9秒前
11秒前
11秒前
13秒前
bingo发布了新的文献求助10
14秒前
善学以致用应助黑小虎采纳,获得10
15秒前
15秒前
怕黑君浩发布了新的文献求助10
15秒前
zyc完成签到,获得积分10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841873
求助须知:如何正确求助?哪些是违规求助? 3383895
关于积分的说明 10531786
捐赠科研通 3104108
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878