Intelligent recognition of electromagnetic radiation precursory signals of rock fracture based on random forest-adaptive boosting

物理 随机森林 Boosting(机器学习) 电磁辐射 航空航天工程 人工智能 光学 计算机科学 工程类
作者
Jiaqi Feng,Baolin Li,Enyuan Wang,Xiaofei Liu,Nan Li,Xiong Cao,Meng Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (4)
标识
DOI:10.1063/5.0266974
摘要

Electromagnetic radiation, as a non-contact and real-time monitoring technology, has been widely used in coal rock fracture and rock burst disaster monitoring during coal mining. Electromagnetic radiation signals can reflect the loading state and fracture degree of coal rocks. However, when electromagnetic radiation is used to predict rock fracture, the current study mainly focuses on the trend change of signal strength, counts and other statistical indicators. There is a lack of research on rock fracture prediction based on the electromagnetic radiation signal itself. Therefore, experiments on monitoring electromagnetic radiation in uniaxial compression of rocks were carried out. Differences in the features of ordinary signals (corresponding to the 0–80% σ stage) and precursory signals (corresponding to the 80% σ—σ stage) of electromagnetic radiation during the loading process of rocks were analyzed. The results showed that different signal features distinguished the two types of electromagnetic radiation signals to different degrees. Automatic ranking of feature importance can be achieved by the random forest method. Adaptive boosting method was used to establish intelligent recognition models for two types of electromagnetic radiation signals. The model recognition accuracy was also analyzed when the feature sets were different. It was finally determined that the highest recognition accuracy (92.25%) of the intelligent recognition model for the two types of signals was achieved when the combination of four features was used as the feature set. The research results provide new ideas and methods for the rock fracture prediction using electromagnetic radiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小元发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助hysmoment采纳,获得10
4秒前
852应助渺渺采纳,获得10
6秒前
jiemo_111完成签到,获得积分10
10秒前
所所应助啊唔采纳,获得10
14秒前
大模型应助潇洒的小蕾采纳,获得10
14秒前
acadedog发布了新的文献求助10
15秒前
酷波er应助123采纳,获得10
16秒前
16秒前
织诗成锦完成签到,获得积分10
18秒前
ppxx驳回了桐桐应助
21秒前
23秒前
DAN_发布了新的文献求助10
24秒前
冷静如柏完成签到,获得积分10
26秒前
stk完成签到,获得积分10
26秒前
尚可完成签到 ,获得积分10
27秒前
啊唔发布了新的文献求助10
30秒前
30秒前
沫柠完成签到 ,获得积分10
33秒前
代代完成签到,获得积分10
34秒前
36秒前
37秒前
渺渺发布了新的文献求助10
41秒前
ppxx发布了新的文献求助10
41秒前
42秒前
44秒前
zz321完成签到,获得积分10
44秒前
小二郎应助hysmoment采纳,获得10
45秒前
CyrusSo524给Ruiii的求助进行了留言
46秒前
123发布了新的文献求助10
47秒前
AJAJ发布了新的文献求助10
47秒前
50秒前
万能图书馆应助Anoxia采纳,获得10
52秒前
justsoso完成签到,获得积分10
53秒前
临诗发布了新的文献求助50
53秒前
啊唔完成签到 ,获得积分10
57秒前
魏你大爷发布了新的文献求助10
57秒前
58秒前
PTDRA发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385