S4DL: Shift-Sensitive Spatial–Spectral Disentangling Learning for Hyperspectral Image Unsupervised Domain Adaptation

高光谱成像 适应(眼睛) 域适应 模式识别(心理学) 人工智能 无监督学习 计算机科学 物理 光学 分类器(UML)
作者
Jie Feng,Tianshu Zhang,Junpeng Zhang,Ronghua Shang,Weisheng Dong,Guangming Shi,Licheng Jiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (9): 16894-16908 被引量:22
标识
DOI:10.1109/tnnls.2025.3556386
摘要

Unsupervised domain adaptation (UDA) techniques, extensively studied in hyperspectral image (HSI) classification, aim to use labeled source domain data and unlabeled target domain data to learn domain invariant features for cross-scene classification. Compared to natural images, numerous spectral bands of HSIs provide abundant semantic information, but they also increase the domain shift significantly. In most existing methods, both explicit alignment and implicit alignment simply align feature distribution, ignoring domain information in the spectrum. We noted that when the spectral channel between source and target domains is distinguished obviously, the transfer performance of these methods tends to deteriorate. Additionally, their performance fluctuates greatly owing to the varying domain shifts across various datasets. To address these problems, a novel shift-sensitive spatial-spectral disentangling learning (S4DL) approach is proposed. In S4DL, gradient-guided spatial-spectral decomposition (GSSD) is designed to separate domain-specific and domain-invariant representations by generating tailored masks under the guidance of the gradient from domain classification. A shift-sensitive adaptive monitor is defined to adjust the intensity of disentangling according to the magnitude of domain shift. Furthermore, a reversible neural network is constructed to retain domain information that lies not only in semantic but also the shallow-level detailed information. Extensive experimental results on several cross-scene HSI datasets consistently verified that S4DL is better than the state-of-the-art UDA methods. Our source code will be available at https://github.com/xdu-jjgs/IEEE_TNNLS_S4DL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkx完成签到,获得积分10
刚刚
1秒前
yn应助PPL采纳,获得10
1秒前
牛顿的苹果完成签到,获得积分10
1秒前
2秒前
yy关注了科研通微信公众号
2秒前
科研通AI6应助兰兰猪头采纳,获得10
2秒前
zhengquanzhao完成签到,获得积分10
3秒前
刘轩瑀发布了新的文献求助10
3秒前
CipherSage应助完美时间线采纳,获得10
3秒前
3秒前
三分恬完成签到,获得积分20
4秒前
Akim应助工大搬砖战神采纳,获得10
4秒前
英俊的铭应助zhh采纳,获得10
5秒前
突突突发布了新的文献求助10
5秒前
roser发布了新的文献求助10
5秒前
5秒前
123456完成签到,获得积分10
5秒前
自信的冷卉完成签到 ,获得积分10
5秒前
Orange应助FG采纳,获得10
5秒前
6秒前
奔跑的酱油完成签到,获得积分10
6秒前
6秒前
小羊发布了新的文献求助10
7秒前
思源应助搬砖采纳,获得10
7秒前
7秒前
7秒前
星辰大海应助文献分困户采纳,获得10
8秒前
8秒前
HongMou完成签到,获得积分10
9秒前
En发布了新的文献求助10
9秒前
Rico完成签到,获得积分10
9秒前
754完成签到,获得积分10
9秒前
10秒前
脑洞疼应助LuoLuo采纳,获得10
10秒前
10秒前
10秒前
10秒前
大模型应助scc采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5398805
求助须知:如何正确求助?哪些是违规求助? 4518348
关于积分的说明 14069065
捐赠科研通 4430606
什么是DOI,文献DOI怎么找? 2432853
邀请新用户注册赠送积分活动 1425258
关于科研通互助平台的介绍 1404284