External Reliable Information-enhanced Multimodal Contrastive Learning for Fake News Detection

假新闻 计算机科学 互联网隐私
作者
Biwei Cao,Qihang Wu,Jiuxin Cao,Bo Liu,Jie Gui
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (1): 31-39 被引量:1
标识
DOI:10.1609/aaai.v39i1.31977
摘要

With the rapid development of the Internet, the information dissemination paradigm has changed and the efficiency has been improved greatly. While this also brings the quick spread of fake news and leads to negative impacts on cyberspace. Currently, the information presentation formats have evolved gradually, with the news formats shifting from texts to multimodal contents. As a result, detecting multimodal fake news has become one of the research hotspots. However, multimodal fake news detection research field still faces two main challenges: the inability to fully and effectively utilize multimodal information for detection, and the low credibility or static nature of the introduced external information, which limits dynamic updates. To bridge the gaps, we propose ERIC-FND, an external reliable information-enhanced multimodal contrastive learning framework for fake news detection. ERIC-FND strengthens the representation of news contents by entity-enriched external information enhancement method. It also enriches the multimodal news information via multimodal semantic interaction method where the multimodal constrative learning is employed to make different modality representations learn from each other. Moreover, an adaptive fusion method is taken to integrate the news representations from different dimensions for the eventual classification. Experiments are done on two commonly used datasets in different languages, X (Twitter) and Weibo. Experiment results demonstrate that our proposed model ERIC-FND outperforms existing state-of-the-art fake news detection methods under the same settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋芳华发布了新的文献求助10
2秒前
4秒前
刘露完成签到,获得积分10
5秒前
5秒前
黄鸿祥发布了新的文献求助10
5秒前
默茗完成签到,获得积分10
6秒前
赘婿应助李嘉图采纳,获得10
7秒前
浮游应助努力采纳,获得10
7秒前
魁梧的冰菱完成签到 ,获得积分10
7秒前
幸运花花完成签到,获得积分10
8秒前
科研通AI5应助韦广阔采纳,获得10
8秒前
9秒前
000v000发布了新的文献求助10
9秒前
李栖迟完成签到 ,获得积分10
9秒前
10秒前
隐形的夏云完成签到,获得积分10
10秒前
学医的小胖子完成签到 ,获得积分10
11秒前
领导范儿应助葡萄树采纳,获得10
11秒前
cherry完成签到,获得积分10
12秒前
无心发布了新的文献求助10
13秒前
爆米花应助徐杰采纳,获得10
13秒前
13秒前
14秒前
14秒前
华仔应助火龙果采纳,获得10
14秒前
科研小白完成签到,获得积分10
14秒前
酷波er应助了尘采纳,获得10
15秒前
蒋芳华完成签到,获得积分10
16秒前
科目三应助辛勤小鸽子采纳,获得10
16秒前
16秒前
wanjingwan发布了新的文献求助10
16秒前
酷波er应助懒癌晚期采纳,获得10
17秒前
17秒前
18秒前
18秒前
ding应助junjun采纳,获得30
18秒前
20秒前
李健应助123study0采纳,获得10
20秒前
北斗文曲星完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196657
求助须知:如何正确求助?哪些是违规求助? 4378232
关于积分的说明 13635659
捐赠科研通 4233741
什么是DOI,文献DOI怎么找? 2322414
邀请新用户注册赠送积分活动 1320532
关于科研通互助平台的介绍 1270952