亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An attention-enhanced Fourier neural operator model for predicting flow fields in turbomachinery Cascades

物理 涡轮机械 流量(数学) 傅里叶变换 级联 傅里叶分析 人工神经网络 操作员(生物学) 统计物理学 机械 应用数学 人工智能 计算机科学 生物化学 化学 数学 色谱法 量子力学 抑制因子 转录因子 基因
作者
Lele Li,Weihao Zhang,Ya Li,Chiju Jiang,Yufan Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0254681
摘要

Flow field information within cascades is crucial for refined turbomachinery design. Currently, this information is primarily obtained through experimental methods or numerical simulations, both of which are complex and time-consuming. Data-driven deep learning approaches offer a potential solution for rapid flow field evaluation. However, existing deep learning-based flow field prediction models exhibit certain limitations in accuracy and generalization, particularly in regions with high gradients, which are often the primary sources of aerodynamic losses. To address these issues, this study develops a high-precision cascade flow field prediction model, A-FNO, based on a Galerkin-type self-attention mechanism and Fourier Neural Operator (FNO). A-FNO is designed based on the newly proposed FNO, which has demonstrated excellent performance in solving partial differential equations. This study extends its application to cascade flow field prediction problems. To mitigate the limitations of FNO in predicting areas with steep gradient changes, we incorporate the self-attention mechanism to capture dependencies between different regions of the flow field, thereby enhancing FNO's ability to express flow field details. Experimental results demonstrate that A-FNO significantly improves prediction accuracy in regions surrounding the boundary layer. The maximum relative error for velocity field predictions is within 5%, for pressure field predictions within 2%, and for temperature field predictions within 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的皓轩完成签到 ,获得积分10
刚刚
可爱的函函应助chenlina采纳,获得10
21秒前
sun关注了科研通微信公众号
31秒前
34秒前
sun发布了新的文献求助10
39秒前
57秒前
FashionBoy应助陈杰采纳,获得10
1分钟前
1分钟前
章鱼完成签到,获得积分10
1分钟前
温柔的天奇完成签到 ,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
chenlina完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
花陵完成签到 ,获得积分10
3分钟前
3分钟前
陈杰发布了新的文献求助10
3分钟前
3分钟前
3分钟前
chenlina发布了新的文献求助10
3分钟前
33333完成签到,获得积分10
3分钟前
zz发布了新的文献求助10
3分钟前
zz完成签到,获得积分10
3分钟前
明理糖豆完成签到,获得积分10
3分钟前
彭于晏应助zz采纳,获得10
3分钟前
4分钟前
00发布了新的文献求助10
4分钟前
4分钟前
00完成签到,获得积分10
4分钟前
11发布了新的文献求助10
4分钟前
早晚完成签到 ,获得积分10
5分钟前
wanci应助11采纳,获得10
5分钟前
chun123完成签到,获得积分10
6分钟前
charih完成签到 ,获得积分10
6分钟前
7分钟前
ZHH完成签到,获得积分10
7分钟前
Akim应助科研通管家采纳,获得10
8分钟前
从容芮应助qianchang采纳,获得30
8分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837415
求助须知:如何正确求助?哪些是违规求助? 3379558
关于积分的说明 10509896
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552