Quantifying tumor morphological complexity based on pretreatment MRI fractal analysis for predicting pathologic complete response and survival in breast cancer: a retrospective, multicenter study

外科肿瘤学 乳腺癌 医学 肿瘤科 回顾性队列研究 内科学 分形分析 癌症 生存分析 病理 分形 放射科 分形维数 数学 数学分析
作者
Yao Huang,Ying Cao,Huifang Chen,Xiaosong Lan,Sun Tang,Zhitao Zhang,Ting Yin,Xiaoxia Wang,Jiuquan Zhang
出处
期刊:Breast Cancer Research [BioMed Central]
卷期号:27 (1)
标识
DOI:10.1186/s13058-025-02034-5
摘要

The tumor morphological complexity is closely associated with treatment response and prognosis in patients with breast cancer. However, conveniently quantifiable tumor morphological complexity methods are currently lacking. Women with breast cancer who underwent NAC and pretreatment MRI were retrospectively enrolled at four centers from May 2010 to April 2023. MRI-based fractal analysis was used to calculate fractal dimensions (FDs), quantifying tumor morphological complexity. Features associated with pCR were identified using multivariable logistic regression analysis, upon which a nomogram model was developed, and assessed by the area under the receiver operating characteristic curve (AUC). Cox proportional hazards analysis was used to identify independent prognostic factors for disease-free survival (DFS) and overall survival (OS) and develop nomogram models. A total of 1109 patients (median age, 49 years [IQR, 43-54 years]) were included. The training, external validation cohort 1, and cohort 2 included 435, 351, and 323 patients, respectively. HR status (odds ratio [OR], 0.234 [0.135, 0.406]; P < 0.001), HER2 status (OR, 3.320 [1.923, 5.729]; P < 0.001), and Global FD (OR, 0.352 [0.261, 0.480]; P < 0.001) were independent predictors of pCR. The nomogram model for predicting pCR achieved AUCs of 0.80 (95% CI: 0.75, 0.86) and 0.74 (95% CI: 0.68, 0.79) in the external validation cohorts. The nomogram model, which integrated global FD and clinicopathological variables can stratify prognosis into low-risk and high-risk groups (log-rank test, DFS: P = 0.04; OS: P < 0.001). Global FD can quantify tumor morphological complexity and the model that combines global FD and clinicopathological variables showed good performance in predicting pCR to NAC and survival in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助小钢炮采纳,获得10
刚刚
1秒前
悦耳听芹完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
不知完成签到 ,获得积分10
3秒前
PRL完成签到,获得积分20
5秒前
5秒前
hjc关闭了hjc文献求助
6秒前
王嘿嘿完成签到,获得积分10
6秒前
sifan完成签到 ,获得积分10
7秒前
8秒前
sddq完成签到,获得积分10
8秒前
ly完成签到 ,获得积分10
8秒前
墨aa发布了新的文献求助10
9秒前
好难发布了新的文献求助10
9秒前
冷傲幻莲发布了新的文献求助10
11秒前
12秒前
rioo发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助嗯嗯采纳,获得10
13秒前
嘿嘿完成签到,获得积分0
14秒前
钱念波完成签到 ,获得积分10
15秒前
16秒前
传奇3应助张祖伦采纳,获得10
17秒前
18秒前
香蕉船上的蕉太狼完成签到,获得积分10
18秒前
橙汁完成签到,获得积分10
19秒前
有魅力的乐珍完成签到 ,获得积分10
19秒前
完美世界应助dalibaba采纳,获得10
19秒前
19秒前
士晋发布了新的文献求助30
20秒前
20秒前
豆子发布了新的文献求助10
22秒前
烟花应助左彦采纳,获得10
23秒前
114514发布了新的文献求助20
24秒前
24秒前
梦会故乡发布了新的文献求助10
26秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
2025 知识产权专业知识和实务 书籍 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4115718
求助须知:如何正确求助?哪些是违规求助? 3654158
关于积分的说明 11571487
捐赠科研通 3357891
什么是DOI,文献DOI怎么找? 1844595
邀请新用户注册赠送积分活动 910195
科研通“疑难数据库(出版商)”最低求助积分说明 826826