Urban flood vulnerability Knowledge-Graph based on remote sensing and textual bimodal data fusion

大洪水 脆弱性(计算) 计算机科学 数据挖掘 遥感 地理 人工智能 计算机安全 考古
作者
Chenfei Duan,Xiazhong Zheng,Rong Li,Zhixia Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:633: 131010-131010 被引量:5
标识
DOI:10.1016/j.jhydrol.2024.131010
摘要

Flood disasters inflict extensive, serious damage on cities and society, significantly constraining urban construction and development. There is an urgent demand to reduce urban flood vulnerability, to explore the evolution mechanism of urban flood vulnerability, and to guide the construction and improvement of urban flood control resilience. An objective and accurate knowledge graph of urban flood vulnerability intuitively, quantitatively, and conveniently expresses the logical relationship between vulnerability indexes. This provides a theoretical and data-based foundation for enhancing urban flood resistance and improving the safety of urban flood control and drainage systems. To address this issue, first, the fusion extraction of text and remote sensing dual-mode data is achieved through technical means such as neural networks. Second, by using multiclass natural language processing (NLP) models, we create an objective index system for urban flood vulnerability that avoids subjective human influence. Finally, we construct an objective weight model group, calculate weights, and then, we establish a vulnerability knowledge graph. The results indicate that (1) by utilizing multidimensional remote sensing images and by adopting the robotic satellite (RoboSat) semantic segmentation model, we achieve high-precision extraction of the remote sensing parameters, such as those for urban roads, terrain, and buildings. Thus, we successfully transform remote sensing data into text data (accuracy is approximately 1 m). (2) We have confirmed the effectiveness of the subjective–objective combined weight method. (3) We introduce a novel approach to create an urban flood vulnerability index system based on bimodal objective data fusion. (4) Utilizing the flood vulnerability knowledge graph, we assess vulnerability levels within the primary urban areas of Zhengzhou City, and we propose governance strategies tailored to the current vulnerability status of each district.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由由完成签到 ,获得积分10
刚刚
稳重奇异果应助jialin采纳,获得10
3秒前
春眠不觉小小酥完成签到,获得积分10
7秒前
9秒前
djbj2022发布了新的文献求助10
10秒前
Lucifer完成签到,获得积分10
10秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
子车茗应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
子车茗应助科研通管家采纳,获得30
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
蛋卷儿应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
三千世界完成签到,获得积分10
14秒前
fransiccarey完成签到,获得积分10
17秒前
fo_shuo完成签到,获得积分10
18秒前
19秒前
23秒前
刘胖胖发布了新的文献求助10
25秒前
27秒前
ll关闭了ll文献求助
28秒前
科研通AI5应助Ni采纳,获得10
28秒前
Chihiro完成签到 ,获得积分10
29秒前
阿尔卑斯完成签到,获得积分10
30秒前
Qiuyajing完成签到,获得积分10
31秒前
31秒前
李健应助miaomiao采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339