Multiple Information Embedded Hashing for Large-Scale Cross-Modal Retrieval

散列函数 计算机科学 特征哈希 动态完美哈希 双重哈希 通用哈希 理论计算机科学 哈希表 二进制代码 数据挖掘 情报检索 人工智能 机器学习 数学 二进制数 算术 计算机安全
作者
Yongxin Wang,Yu-Wei Zhan,Zhen-Duo Chen,Xin Luo,Xin-Shun Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 5118-5131 被引量:16
标识
DOI:10.1109/tcsvt.2023.3340102
摘要

Recently, many efforts have been devoted to improving the retrieval performance of supervised cross-modal hashing; however, current methods are gradually reaching a performance bottleneck, especially when dealing with real-world multimedia data. This is mainly due to their application of coarse-grained semantics, unrobust hash functions, and inflexible workflows. Therefore, discovering refined semantics hidden in data, designing robust hash functions, and creating a non-interfering but facilitative learning workflow are much more significant. With this motivation, in this paper, we propose a novel supervised cross-modal hashing method, i.e., Multiple Information Embedded Hashing, MIEH for short. It consists of a three-step working flow that flexibly handles multiple information mining, hash code learning, and hash function learning. First, it explores the multimedia data from multiple perspectives such as modal-level consistency, class-level discriminability, and instance-level similarity to mine comprehensive semantic information, which not only contributes to the generation of discriminative hash codes, but also accelerates convergence. Subsequently, MIEH is committed to embed the refined semantics into targeted hash codes with an efficient discrete optimization algorithm. Finally, it improves the learning ability of linear hash function by noisy example erasing and deviation correcting. Considering this, MIEH is able to garner more robust hash function. Extensive experiments conducted on three popular benchmark datasets highlight the superiority of our MIEH on large-scale cross-modal retrieval tasks and demonstrate its competitive performance against state-of-the-art approaches. The source code is available 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助www采纳,获得10
刚刚
1秒前
外向的空心人完成签到,获得积分10
2秒前
李健应助你好采纳,获得10
3秒前
ZPQ完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
WZ发布了新的文献求助10
3秒前
4秒前
gezid完成签到 ,获得积分10
5秒前
8秒前
9秒前
Jasper应助岳岳岳采纳,获得10
10秒前
科研通AI6.1应助xiankanyun采纳,获得10
10秒前
123完成签到 ,获得积分10
10秒前
11秒前
无限幻枫发布了新的文献求助10
12秒前
13秒前
13秒前
斯文败类应助热心的涵阳采纳,获得10
14秒前
15秒前
15秒前
Ava应助WQJ采纳,获得10
15秒前
争争向荣发布了新的文献求助10
15秒前
16秒前
风趣绮菱完成签到 ,获得积分10
17秒前
sea发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
小二郎应助无444444采纳,获得10
19秒前
19秒前
可爱的函函应助干饭宝采纳,获得10
19秒前
20秒前
20秒前
争争向荣完成签到,获得积分10
21秒前
山茶发布了新的文献求助10
21秒前
岳岳岳发布了新的文献求助10
21秒前
小罗不吃芋头完成签到,获得积分20
22秒前
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741