清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Review of deep learning methods for denoising of medical low-dose CT images

人工智能 非本地手段 降噪 计算机科学 深度学习 图像去噪 图像质量 视频去噪 噪音(视频) 模式识别(心理学) 图像(数学) 视频跟踪 对象(语法) 多视点视频编码
作者
Ju Zhang,Weiwei Gong,Lieli Ye,Fanghong Wang,Zhibo Shangguan,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108112-108112 被引量:24
标识
DOI:10.1016/j.compbiomed.2024.108112
摘要

To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016–2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤雯慧完成签到,获得积分10
2秒前
ESC惠子子子子子完成签到 ,获得积分10
7秒前
10秒前
张若旸完成签到 ,获得积分10
16秒前
徐丑完成签到,获得积分10
21秒前
26秒前
MM完成签到,获得积分10
38秒前
kenchilie完成签到 ,获得积分10
41秒前
跳跃的鹏飞完成签到 ,获得积分10
47秒前
53秒前
haralee完成签到 ,获得积分10
57秒前
路过完成签到 ,获得积分10
58秒前
1分钟前
科研通AI5应助ma采纳,获得10
1分钟前
doreen完成签到 ,获得积分0
1分钟前
秋夜临完成签到,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
小飞完成签到 ,获得积分10
1分钟前
哥哥发布了新的文献求助10
1分钟前
快乐随心完成签到 ,获得积分10
1分钟前
圈圈完成签到,获得积分10
1分钟前
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
keeptg完成签到 ,获得积分10
1分钟前
倾听昆语完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
DMA50完成签到 ,获得积分10
2分钟前
小公牛完成签到 ,获得积分10
2分钟前
PDIF-CN2完成签到,获得积分10
2分钟前
2分钟前
cornelialkx发布了新的文献求助10
2分钟前
哥哥完成签到,获得积分10
2分钟前
王波完成签到 ,获得积分10
2分钟前
愉快无心完成签到 ,获得积分10
2分钟前
cornelialkx完成签到,获得积分10
2分钟前
GreenDuane完成签到 ,获得积分0
2分钟前
小十一完成签到 ,获得积分10
3分钟前
典雅三颜完成签到 ,获得积分10
3分钟前
雪花完成签到 ,获得积分10
3分钟前
lingling完成签到 ,获得积分10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840860
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526469
捐赠科研通 3102624
什么是DOI,文献DOI怎么找? 1708930
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632