已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation

骨料(复合) 极限抗拉强度 玄武岩纤维 玄武岩 材料科学 复合材料 珊瑚 碱-骨料反应 纤维 岩土工程 地质学 地球化学 海洋学
作者
Zhen Sun,Yalin Li,Yuxi Yang,Li Su,Shijie Xie
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:416: 135133-135133 被引量:35
标识
DOI:10.1016/j.conbuildmat.2024.135133
摘要

The split tensile strength of basalt fiber-reinforced coral aggregate concrete (BFRCAC-SS) is a critical parameter in structural design because it directly affects the load-bearing capacity and durability of BFRCAC structures. BFRCAC-SS is influenced by multiple variables, and the accuracy and generalization capability of traditional explicit models for predicting BFRCAC-SS with individual variables are limited. Therefore, this study involved collecting 313 data sets from 14 articles to establish a comprehensive BFRCAC-SS database. The hyperparameters (iteration count, tree depth, and learning rate) of the XGBoost algorithm were optimized using prairie dog optimization, hunger games search, and egret swarm optimization (ESOA) algorithms. Consequently, three optimized XGBoost models for BFRCAC-SS were developed. Furthermore, feature importance was analyzed using the Shapley additive explanation method. The performance of the optimized XGBoost model was subsequently validated through experimental testing. Results indicate that the ESOA–XGBoost model provides predictions that are closer to the actual values, with smaller mean errors and standard deviations. The performance indicators, including coefficient of determination, mean absolute error, mean absolute percentage error, mean square error, and root mean square error, of the ESOA–XGBoost model are 0.9633, 0.1002, 2.8862, 0.0188, and 0.1373, respectively, and are superior to those of the other tested models. Curing time and the water–binder ratio are identified as the two most critical factors. Prolonging curing time and reducing the water–binder ratio enhance the BFRCAC-SS. A graphical user interface for BFRCAC-SS is developed on the basis of the ESOA-XGBoost model, which enables the visualization of BFRCAC-SS predictions. Furthermore, the relative error between the experimental and predicted values consistently remains below 5%, which highlights the strong generalization and accuracy of the ESOA–XGBoost model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助叶子采纳,获得10
1秒前
alexye619完成签到 ,获得积分10
3秒前
FYhan完成签到 ,获得积分10
7秒前
小二郎应助李海洋采纳,获得10
10秒前
15秒前
城南烤地瓜完成签到 ,获得积分10
16秒前
289qq完成签到,获得积分10
16秒前
17秒前
17秒前
VDC发布了新的文献求助10
18秒前
18秒前
FF完成签到 ,获得积分10
19秒前
herschelwu发布了新的文献求助10
21秒前
信仰发布了新的文献求助30
23秒前
zm发布了新的文献求助10
23秒前
李海洋发布了新的文献求助10
23秒前
lin.xy发布了新的文献求助10
23秒前
tongluobing完成签到,获得积分10
27秒前
herschelwu完成签到,获得积分10
27秒前
lucky666tyy完成签到,获得积分10
29秒前
lin.xy完成签到,获得积分10
30秒前
31秒前
Hello应助KH采纳,获得10
32秒前
小马甲应助KonanoDade采纳,获得10
33秒前
CipherSage应助神内小大夫采纳,获得10
34秒前
机器猫发布了新的文献求助50
36秒前
信仰完成签到,获得积分10
39秒前
雨夜星空完成签到 ,获得积分10
44秒前
44秒前
CYY发布了新的文献求助10
44秒前
温暖的囧完成签到,获得积分10
49秒前
KH发布了新的文献求助10
50秒前
51秒前
科研通AI2S应助秭归子归采纳,获得10
55秒前
SiO2完成签到 ,获得积分10
55秒前
恰你完成签到,获得积分10
55秒前
nan完成签到,获得积分10
1分钟前
zzzzzz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212074
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798050
科研通“疑难数据库(出版商)”最低求助积分说明 758201