Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

计算机科学 背景(考古学) 弹道 术语 强化学习 领域(数学) 优势和劣势 深度学习 数据科学 人工智能 机器学习 天文 物理 古生物学 语言学 哲学 数学 认识论 纯数学 生物
作者
Vibha Bharilya,Neetesh Kumar
出处
期刊:Vehicular Communications [Elsevier BV]
卷期号:: 100733-100733 被引量:24
标识
DOI:10.1016/j.vehcom.2024.100733
摘要

The significant contribution of human errors, accounting for approximately 94% (with a margin of ±2.2%), to road crashes leading to casualties, vehicle damages, and safety concerns necessitates the exploration of alternative approaches. Autonomous Vehicles (AVs) have emerged as a promising solution by replacing human drivers with advanced computer-aided decision-making systems. However, for AVs to effectively navigate the road, they must possess the capability to predict the future behaviour of nearby traffic participants, similar to the predictive driving abilities of human drivers. Building upon existing literature is crucial to advance the field and develop a comprehensive understanding of trajectory prediction methods in the context of automated driving. To address this need, we have undertaken a comprehensive review that focuses on trajectory prediction methods for AVs, with a particular emphasis on machine learning techniques including deep learning and reinforcement learning-based approaches. We have extensively examined over two hundred studies related to trajectory prediction in the context of AVs. The paper begins with an introduction to the general problem of predicting vehicle trajectories and provides an overview of the key concepts and terminology used throughout. After providing a brief overview of conventional methods, this review conducts a comprehensive evaluation of several deep learning-based techniques. Each method is summarized briefly, accompanied by a detailed analysis of its strengths and weaknesses. The discussion further extends to reinforcement learning-based methods. This article also examines the various datasets and evaluation metrics that are commonly used in trajectory prediction tasks. Encouraging an unbiased and objective discussion, we compare two major learning processes, considering specific functional features. By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction. Its primary objective is to streamline current research efforts and offer a futuristic perspective, ultimately benefiting future developments in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴语完成签到 ,获得积分10
1秒前
1秒前
frl完成签到,获得积分10
4秒前
5秒前
Vivian完成签到 ,获得积分10
5秒前
CodeCraft应助啊嘀哩嘀哩采纳,获得20
6秒前
orixero应助晴123采纳,获得10
7秒前
巫郁完成签到,获得积分10
7秒前
领导范儿应助Knight采纳,获得10
11秒前
两个轮发布了新的文献求助10
11秒前
MHCL完成签到 ,获得积分10
13秒前
小鹿斑比完成签到,获得积分10
15秒前
小马甲应助小周采纳,获得10
15秒前
wait发布了新的文献求助30
15秒前
乐乐应助明亮的冰颜采纳,获得10
15秒前
17秒前
搞份炸鸡778完成签到,获得积分10
19秒前
liqunfang发布了新的文献求助10
20秒前
21秒前
Wuhuijing完成签到,获得积分10
21秒前
123奥力给发布了新的文献求助30
22秒前
在水一方应助鄂闽工贸采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
25秒前
小学生库里完成签到,获得积分10
28秒前
Orange应助yicaros采纳,获得10
28秒前
29秒前
微笑的映波完成签到,获得积分10
30秒前
xiaomili发布了新的文献求助10
30秒前
30秒前
31秒前
英俊的铭应助曾婉之小汁采纳,获得10
32秒前
32秒前
34秒前
35秒前
安德鲁森完成签到 ,获得积分10
35秒前
36秒前
36秒前
HEAUBOOK应助阿M啊啊采纳,获得10
37秒前
科研小菜鸟完成签到 ,获得积分10
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784064
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240457
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800189
科研通“疑难数据库(出版商)”最低求助积分说明 759213