MRI radiomics-based decision support tool for a personalized classification of cervical disc degeneration: a two-center study

磁共振成像 人工智能 随机森林 无线电技术 医学 特征选择 计算机科学 分割 机器学习 试验装置 支持向量机 放射科 模式识别(心理学)
作者
Jun Xie,Yi Yang,Zekun Jiang,Kerui Zhang,Xiang Zhang,Yuheng Lin,Yiwei Shen,Xuehai Jia,Hao Liu,Shaofen Yang,Yang Jiang,Litai Ma
出处
期刊:Frontiers in Physiology [Frontiers Media]
卷期号:14 被引量:6
标识
DOI:10.3389/fphys.2023.1281506
摘要

Objectives: To develop and validate an MRI radiomics-based decision support tool for the automated grading of cervical disc degeneration. Methods: The retrospective study included 2,610 cervical disc samples of 435 patients from two hospitals. The cervical magnetic resonance imaging (MRI) analysis of patients confirmed cervical disc degeneration grades using the Pfirrmann grading system. A training set (1,830 samples of 305 patients) and an independent test set (780 samples of 130 patients) were divided for the construction and validation of the machine learning model, respectively. We provided a fine-tuned MedSAM model for automated cervical disc segmentation. Then, we extracted 924 radiomic features from each segmented disc in T1 and T2 MRI modalities. All features were processed and selected using minimum redundancy maximum relevance (mRMR) and multiple machine learning algorithms. Meanwhile, the radiomics models of various machine learning algorithms and MRI images were constructed and compared. Finally, the combined radiomics model was constructed in the training set and validated in the test set. Radiomic feature mapping was provided for auxiliary diagnosis. Results: Of the 2,610 cervical disc samples, 794 (30.4%) were classified as low grade and 1,816 (69.6%) were classified as high grade. The fine-tuned MedSAM model achieved good segmentation performance, with the mean Dice coefficient of 0.93. Higher-order texture features contributed to the dominant force in the diagnostic task (80%). Among various machine learning models, random forest performed better than the other algorithms ( p < 0.01), and the T2 MRI radiomics model showed better results than T1 MRI in the diagnostic performance ( p < 0.05). The final combined radiomics model had an area under the receiver operating characteristic curve (AUC) of 0.95, an accuracy of 89.51%, a precision of 87.07%, a recall of 98.83%, and an F1 score of 0.93 in the test set, which were all better than those of other models ( p < 0.05). Conclusion: The radiomics-based decision support tool using T1 and T2 MRI modalities can be used for cervical disc degeneration grading, facilitating individualized management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然麦片完成签到,获得积分20
1秒前
CodeCraft应助万灵竹采纳,获得10
5秒前
bkagyin应助于天一采纳,获得10
5秒前
世外完成签到,获得积分10
5秒前
郭郭完成签到,获得积分20
10秒前
10秒前
xxxx完成签到,获得积分10
10秒前
zhien完成签到,获得积分10
10秒前
12秒前
baozibaozi完成签到,获得积分10
13秒前
Zachary完成签到,获得积分10
13秒前
16秒前
Ava应助wuyan204采纳,获得10
18秒前
鼻揩了转去应助郭郭采纳,获得10
20秒前
zhien发布了新的文献求助10
20秒前
万灵竹发布了新的文献求助10
22秒前
暖暖完成签到 ,获得积分10
25秒前
锥子完成签到,获得积分10
25秒前
小垃圾10号完成签到,获得积分10
29秒前
怕黑行恶完成签到,获得积分10
29秒前
kxy发布了新的文献求助10
29秒前
花开富贵完成签到 ,获得积分10
30秒前
30秒前
yang应助taotao采纳,获得30
31秒前
mp5完成签到,获得积分10
32秒前
humengxiao完成签到,获得积分10
34秒前
数乱了梨花完成签到 ,获得积分10
34秒前
AoAoo完成签到,获得积分10
35秒前
震动的听枫完成签到,获得积分10
35秒前
李小聪完成签到 ,获得积分10
35秒前
体贴的青烟完成签到,获得积分10
36秒前
SucceedIn完成签到,获得积分10
39秒前
41秒前
41秒前
程大海完成签到,获得积分10
43秒前
愉快西牛完成签到 ,获得积分10
43秒前
伊莎贝儿完成签到 ,获得积分10
43秒前
篇篇高分完成签到,获得积分10
45秒前
涨不停ing完成签到,获得积分10
45秒前
1101592875发布了新的文献求助10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779363
求助须知:如何正确求助?哪些是违规求助? 3324881
关于积分的说明 10220321
捐赠科研通 3040066
什么是DOI,文献DOI怎么找? 1668529
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503