Data-driven estimates of the strength and failure modes of CFRP-steel bonded joints by implementing the CTGAN method

结构工程 接头(建筑物) 支持向量机 抗剪强度(土壤) 极限抗拉强度 人工神经网络 材料科学 胶粘剂 失效模式及影响分析 计算机科学 数据驱动 试验数据 复合材料 工程类 人工智能 地质学 图层(电子) 土壤科学 土壤水分 程序设计语言
作者
Songbo Wang,Tim Stratford,Yang Li,Biao Li
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:299: 109962-109962 被引量:11
标识
DOI:10.1016/j.engfracmech.2024.109962
摘要

The bond strength between the CFRP and steel usually dominates the final strengthened effectiveness. However, the CFRP-steel bond strength is affected by various geometric and material properties and exhibits different failure modes, making accurate predictions challenging. This study utilises data-driven machine learning (ML) methods to predict the strength and failure modes of CFRP-steel joints. An experimental dataset consisting of 178 single-lap shear test results was first built, after which the Conditional Tabular Generative Adversarial Networks (CTGAN) method was applied to augment the limited available data. Four broadly used ML algorithms: Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Decision Trees (DT) and Artificial Neural Networks (ANN) were applied. The ANN regression model achieved the best performance in predicting joint strength (Rtest2=0.95), while the SVM classification model achieved the best performance in predicting failure modes (accuracy ≥ 92.3 %). The SHapley Additive exPlanations analysis further revealed that the Young's modulus of the adhesive was most significant to the joint strength, while the tensile strength of the adhesive was most significant to the failure modes. The ultimately constructed ML models and the corresponding analyses presented can benefit practical structural engineering applications and provide insights into the optimal CFRP-steel joint design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山乞凡完成签到 ,获得积分10
刚刚
故意的怜晴完成签到,获得积分10
刚刚
YH应助sugarballer采纳,获得50
1秒前
脑洞疼应助纯情的寻绿采纳,获得10
1秒前
2秒前
chen发布了新的文献求助10
2秒前
飞龙完成签到,获得积分10
3秒前
3秒前
dydxf完成签到,获得积分10
4秒前
贼拉瘦的美神完成签到,获得积分10
4秒前
研研研发布了新的文献求助10
4秒前
4秒前
4秒前
海的蓝色是水完成签到,获得积分10
5秒前
刘七七努力搞科研完成签到 ,获得积分10
5秒前
7秒前
活泼新儿完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
我爱学习发布了新的文献求助10
8秒前
饱满含玉发布了新的文献求助50
11秒前
平常的毛豆应助hooka采纳,获得10
11秒前
wwyy完成签到 ,获得积分10
14秒前
14秒前
16秒前
16秒前
我爱学习完成签到,获得积分10
16秒前
Akim应助爬不起来采纳,获得10
17秒前
多吃香菜完成签到,获得积分10
17秒前
17秒前
20秒前
科研通AI5应助研研研采纳,获得10
21秒前
燕仇天发布了新的文献求助20
21秒前
21秒前
22秒前
22秒前
余咋发布了新的文献求助10
23秒前
田一点完成签到,获得积分10
24秒前
饱满含玉完成签到,获得积分10
24秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799327
求助须知:如何正确求助?哪些是违规求助? 3344954
关于积分的说明 10322665
捐赠科研通 3061436
什么是DOI,文献DOI怎么找? 1680323
邀请新用户注册赠送积分活动 807007
科研通“疑难数据库(出版商)”最低求助积分说明 763453