已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosing autism severity associated with physical fitness and gray matter volume in children with autism spectrum disorder: Explainable machine learning method

自闭症谱系障碍 自闭症 身体素质 孤独症诊断观察量表 医学 心理学 物理医学与康复 机器学习 物理疗法 精神科 计算机科学
作者
Keyun Xu,Zhiyuan Sun,Zhiyuan Qiao,Aiguo Chen
出处
期刊:Complementary Therapies in Clinical Practice [Elsevier]
卷期号:54: 101825-101825 被引量:15
标识
DOI:10.1016/j.ctcp.2023.101825
摘要

This study aimed to investigate the relationship between physical fitness, gray matter volume (GMV), and autism severity in children with autism spectrum disorder (ASD). Besides, we sought to diagnose autism severity associated with physical fitness and GMV using machine learning methods. Ninety children diagnosed with ASD underwent physical fitness tests, magnetic resonance imaging scans, and autism severity assessments. Diagnosis models were established using extreme gradient boosting (XGB), random forest (RF), support vector machine (SVM), and decision tree (DT) algorithms. Hyperparameters were optimized through the grid search cross-validation method. The shapley additive explanation (SHAP) method was employed to explain the diagnosis results. Our study revealed associations between muscular strength in physical fitness and GMV in specific brain regions (left paracentral lobule, bilateral thalamus, left inferior temporal gyrus, and cerebellar vermis I-II) with autism severity in children with ASD. The accuracy (95 % confidence interval) of the XGB, RF, SVM, and DT models were 77.9 % (77.3, 78.6 %), 72.4 % (71.7, 73.2 %), 71.9 % (71.1, 72.6 %), and 66.9 % (66.2, 67.7 %), respectively. SHAP analysis revealed that muscular strength and thalamic GMV significantly influenced the decision-making process of the XGB model. Machine learning methods can effectively diagnose autism severity associated with physical fitness and GMV in children with ASD. In this respect, the XGB model demonstrated excellent performance across various indicators, suggesting its potential for diagnosing autism severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Crisp完成签到 ,获得积分10
2秒前
Criminology34应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
嘻嘻哈哈发布了新的文献求助170
6秒前
Ronan完成签到 ,获得积分10
7秒前
完美成协发布了新的文献求助30
7秒前
lby完成签到 ,获得积分10
8秒前
一粟完成签到 ,获得积分10
8秒前
Owen应助SHIRO采纳,获得10
8秒前
9秒前
10秒前
Junex完成签到 ,获得积分10
10秒前
12秒前
科研通AI6应助Maryamgvl采纳,获得10
15秒前
15秒前
杨武天一发布了新的文献求助10
15秒前
17秒前
17秒前
努力的大羊洁完成签到,获得积分10
18秒前
周周发布了新的文献求助10
18秒前
北方完成签到,获得积分10
19秒前
wanci应助shinn采纳,获得50
20秒前
20秒前
完美成协完成签到,获得积分10
20秒前
xima完成签到 ,获得积分0
20秒前
达雨发布了新的文献求助10
20秒前
JamesPei应助layers采纳,获得10
21秒前
21秒前
cxy完成签到 ,获得积分10
22秒前
科研通AI6应助ShangQ采纳,获得10
22秒前
Jing完成签到 ,获得积分10
23秒前
NiNi完成签到 ,获得积分10
24秒前
精明黄蜂完成签到 ,获得积分10
24秒前
HDrinnk完成签到,获得积分10
24秒前
在水一方应助Bob采纳,获得10
25秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401154
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078818
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792