清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Scalable and rapid building damage detection after hurricane Ian using causal Bayesian networks and InSAR imagery

干涉合成孔径雷达 基本事实 遥感 计算机科学 大洪水 合成孔径雷达 贝叶斯网络 卫星图像 环境科学 机器学习 气象学 人工智能 地理 考古
作者
Chenguang Wang,Yepeng Liu,Xiaojian Zhang,Xuechun Li,Vladimir A. Paramygin,Y. Peter Sheng,Xilei Zhao,Susu Xu
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:104: 104371-104371 被引量:1
标识
DOI:10.1016/j.ijdrr.2024.104371
摘要

Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts. Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event, which can be readily used to conduct rapid building damage assessment. Compared to optical satellite imageries, the Synthetic Aperture Radar can penetrate cloud cover and provide more complete spatial coverage of damaged zone in various weather conditions. However, these InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities, making it challenging to extract accurate building damage information. In this paper, we introduced a causality-informed Bayesian network inference approach for rapid post-hurricane building damage detection from InSAR imagery. This approach encoded complex causal dependencies among wind, flood, building damage, and InSAR imagery using a holistic causal Bayesian network. Based on the causal Bayesian network, we further jointly inferred the large-scale unobserved building damage by fusing the information from InSAR imagery with prior physical models of flood and wind, without the need for ground truth labels. Furthermore, we validated our estimation results in a real-world devastating hurricane—the 2022 Hurricane Ian. We gathered and annotated building damage ground truth data in Lee County, Florida, and compared the introduced method's estimation results with the ground truth and also benchmarked it against state-of-the-art models to assess the effectiveness of our proposed method. The results show that our method advances building damage assessment after hurricanes by accurately reflecting the complex dynamics between wind and flood impacts. Notably, it achieves this without the need for a ground truth label, which is a substantial step forward from traditional methods. Our model registers a 22.6% increase in the Area Under the Curve (AUC) and a 46.29% enhancement in the True Positive Rate (TPR). Moreover, it expedites the detection of building damage, cutting down processing times by up to 83.8%. These improvements mark a considerable leap in efficiency, demonstrating our method's ability to streamline the assessment process markedly over conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的冰枫完成签到,获得积分10
10秒前
灿烂而孤独的八戒完成签到 ,获得积分0
14秒前
27秒前
morichoc发布了新的文献求助10
32秒前
小新小新完成签到 ,获得积分10
37秒前
阔达白凡完成签到,获得积分10
38秒前
研友_ngqoE8完成签到,获得积分10
42秒前
48秒前
激动的似狮完成签到,获得积分10
1分钟前
义气的断秋完成签到,获得积分10
1分钟前
GingerF应助lili采纳,获得50
1分钟前
鲁成危完成签到,获得积分10
1分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
3分钟前
大饼完成签到 ,获得积分10
3分钟前
上官以山完成签到,获得积分10
3分钟前
3分钟前
科研通AI5应助犹豫幻丝采纳,获得20
4分钟前
4分钟前
科研啄木鸟完成签到 ,获得积分10
4分钟前
5分钟前
6分钟前
舒心糖豆完成签到,获得积分10
6分钟前
7分钟前
计划完成签到,获得积分10
7分钟前
小叶子发布了新的文献求助10
8分钟前
8分钟前
8分钟前
Hunter发布了新的文献求助10
8分钟前
科研通AI6应助spike采纳,获得10
8分钟前
如意秋珊完成签到 ,获得积分10
9分钟前
9分钟前
Hunter发布了新的文献求助10
9分钟前
Hunter完成签到,获得积分10
9分钟前
10分钟前
11分钟前
笨笨山芙完成签到 ,获得积分10
12分钟前
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513957
求助须知:如何正确求助?哪些是违规求助? 3958947
关于积分的说明 12270815
捐赠科研通 3620656
什么是DOI,文献DOI怎么找? 1992564
邀请新用户注册赠送积分活动 1028870
科研通“疑难数据库(出版商)”最低求助积分说明 919949