2D transition metal Dichalcogenides: Synthesis methods and their pivotal role in Photo, Piezo, and photo-piezocatalytic processes

光催化 纳米技术 压电 材料科学 过渡金属 石墨烯 半导体 领域(数学) 工程物理 催化作用 化学 光电子学 复合材料 工程类 生物化学 数学 纯数学
作者
Deepa Thakur,Chirag Porwal,Vishal Singh Chauhan,Viswanath Balakrishnan,Rahul Vaish
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:337: 126462-126462 被引量:17
标识
DOI:10.1016/j.seppur.2024.126462
摘要

Over the past two decades, the field of two-dimensional (2D) layered materials has witnessed a remarkable advancement, owing to the discovery of the exceptional properties of graphene. This sustained growth is a testament to the significance of this breakthrough and its ongoing impact on research and development in this field. Graphene has already found its way into various industries, but the next material from the 2D family that is expected to make a mark is transition metal dichalcogenide. These materials possess various wondrous properties, such as atomic-level thickness, flexible nature, tunable band gap, and excellent thermal, mechanical, and chemical stability. Water cleaning is one of the major challenges faced by the world today, and photocatalysis has emerged as a promising solution. However, its present efficiency is not yet enough to meet industrial requirements. The piezoelectric effect, which utilizes mechanical deformations to generate a similar effect as photocatalysis, has lately added attention as a method to increase efficiency. Specifically, 2D-transition metal dichalcogenides (TMDCs) in odd layers possess a great piezoelectric effect, making them ideal for piezo-catalysis. The addition of the piezoelectric effect to photocatalysis can increase efficiency, and 2D semiconductors have the potential to possess both effects simultaneously, leading to a new area called the piezo-phototronic effect. This review focuses on the fundamental concepts and recent advancements in the field of 2D-TMDCs, specifically concerning piezocatalysis, photocatalysis, and combined photo-piezocatalysis processes. Finally, this review discusses the critical challenges and future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安信怀发布了新的文献求助10
刚刚
所所应助RuiZ采纳,获得10
刚刚
十一完成签到,获得积分10
1秒前
科研通AI5应助灵巧人英采纳,获得30
1秒前
王先生完成签到 ,获得积分10
3秒前
5秒前
ljc完成签到,获得积分0
7秒前
CipherSage应助joleisalau采纳,获得10
8秒前
8秒前
9秒前
9秒前
小鸣完成签到 ,获得积分10
11秒前
科研通AI5应助堂风采纳,获得30
11秒前
yiyi完成签到,获得积分10
12秒前
小马甲应助Bart9999采纳,获得10
12秒前
文静三颜发布了新的文献求助10
15秒前
16秒前
研友_5Y9X75完成签到,获得积分10
18秒前
万能图书馆应助胖虎采纳,获得10
20秒前
光亮的太阳完成签到,获得积分10
21秒前
23秒前
遗迹小白完成签到,获得积分10
23秒前
24秒前
25秒前
文静三颜完成签到,获得积分10
26秒前
kyt发布了新的文献求助10
28秒前
852应助迅速的八宝粥采纳,获得10
29秒前
wanci应助Helium采纳,获得10
32秒前
Hello应助科研通管家采纳,获得10
33秒前
所所应助科研通管家采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
残幻应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
34秒前
田様应助科研通管家采纳,获得10
34秒前
34秒前
wanci应助科研通管家采纳,获得10
34秒前
嘿嘿哈嘿88完成签到,获得积分10
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669