Adaptive Multi-Task Learning for Multi-PAR in Real World

任务(项目管理) 计算机科学 人工智能 工程类 系统工程
作者
Haoyun Sun,Hongwei Zhao,Weishan Zhang,Liang Xu,Hongqing Guan
出处
期刊:IEEE journal of radio frequency identification [Institute of Electrical and Electronics Engineers]
卷期号:8: 357-366
标识
DOI:10.1109/jrfid.2024.3371881
摘要

Multi-pedestrian attribute recognition (Multi-PAR) is a vital task for smart city surveillance applications, which requires identifying various attributes of multiple pedestrians in a single image. However, most existing methods are limited by the complex backgrounds and the time-consuming pedestrian detection preprocessing work in real-world scenarios, and cannot achieve satisfactory accuracy and efficiency. In this paper, we present a novel end-to-end solution, named Adaptive Multi-Task Network (AMTN), which jointly performs multiple tasks and leverages an adaptive feature re-extraction (AFRE) module to optimize them. Specially, We integrate pedestrian detection into AMTN to perform PAR preprocessing, and incorporate a person re-identification (ReID) task branch to track pedestrians in video streams, thereby selecting the clearest video frames for analysis instead of every video frame to improve analysis efficiency and recognition accuracy. Moreover, we design a dynamic weight fitting loss (DWFL) function to prevent gradient explosions and balance tasks during training. We conduct extensive experiments to evaluate the accuracy and efficiency of our approach, and compare it with the state-of-the-art methods. The experimental results demonstrate that our method outperforms other state-of-the-art algorithms, achieving 1.5%-4.9% improvement in accuracy on Multi-PAR. The experiments also show that the AMTN can greatly improve the efficiency of preprocessing by saving the computation of feature extraction through basic features sharing. Compared with the state-of-the-art detection algorithm Yolov5s, it can improve the efficiency by 42%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助秀丽的大门采纳,获得10
1秒前
阳光的一应助KL采纳,获得10
1秒前
1秒前
2秒前
邓佳鑫Alan应助xzy998采纳,获得10
2秒前
zho应助懂得咚咚采纳,获得10
2秒前
桐桐应助麻薯采纳,获得10
2秒前
SciGPT应助陈槊诸采纳,获得10
3秒前
O泡果奶完成签到 ,获得积分10
5秒前
woodensward10发布了新的文献求助10
6秒前
建新发布了新的文献求助10
7秒前
7秒前
ciooskiwk发布了新的文献求助10
8秒前
麻薯完成签到,获得积分20
10秒前
chen发布了新的文献求助10
11秒前
mofei完成签到,获得积分10
12秒前
赘婿应助大蘑菇炒小蘑菇采纳,获得10
12秒前
北海发布了新的文献求助10
13秒前
顾矜应助陈槊诸采纳,获得10
13秒前
xjcy应助xzy998采纳,获得10
15秒前
15秒前
16秒前
生活的狗发布了新的文献求助10
17秒前
17秒前
田様应助woodensward10采纳,获得10
18秒前
20秒前
鹿友绿完成签到,获得积分10
20秒前
pedslee发布了新的文献求助10
22秒前
23秒前
乐乐应助陈槊诸采纳,获得10
23秒前
科研通AI2S应助Season采纳,获得10
24秒前
斯榭完成签到,获得积分10
24秒前
frap完成签到,获得积分0
24秒前
24秒前
26秒前
26秒前
雨琴完成签到,获得积分10
27秒前
27秒前
banabanama发布了新的文献求助10
28秒前
28秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897235
求助须知:如何正确求助?哪些是违规求助? 3441153
关于积分的说明 10820262
捐赠科研通 3166127
什么是DOI,文献DOI怎么找? 1749188
邀请新用户注册赠送积分活动 845187
科研通“疑难数据库(出版商)”最低求助积分说明 788492