Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology

可解释性 多样性(控制论) 医学 服务(商务) 白皮书 领域(数学) 人工智能 计算机科学 数据科学 业务 政治学 营销 数学 法学 纯数学
作者
Emanuele Neri,Gayanè Aghakhanyan,Marta Zerunian,Nicoletta Gandolfo,Roberto Grassi,Vittorio Miele,Andrea Giovagnoni,Andrea Laghi
出处
期刊:Radiologia Medica [Springer Science+Business Media]
卷期号:128 (6): 755-764 被引量:21
标识
DOI:10.1007/s11547-023-01634-5
摘要

Abstract The term Explainable Artificial Intelligence (xAI) groups together the scientific body of knowledge developed while searching for methods to explain the inner logic behind the AI algorithm and the model inference based on knowledge-based interpretability. The xAI is now generally recognized as a core area of AI. A variety of xAI methods currently are available to researchers; nonetheless, the comprehensive classification of the xAI methods is still lacking. In addition, there is no consensus among the researchers with regards to what an explanation exactly is and which are salient properties that must be considered to make it understandable for every end-user. The SIRM introduces an xAI-white paper, which is intended to aid Radiologists, medical practitioners, and scientists in the understanding an emerging field of xAI, the black-box problem behind the success of the AI, the xAI methods to unveil the black-box into a glass-box, the role, and responsibilities of the Radiologists for appropriate use of the AI-technology. Due to the rapidly changing and evolution of AI, a definitive conclusion or solution is far away from being defined. However, one of our greatest responsibilities is to keep up with the change in a critical manner. In fact, ignoring and discrediting the advent of AI a priori will not curb its use but could result in its application without awareness. Therefore, learning and increasing our knowledge about this very important technological change will allow us to put AI at our service and at the service of the patients in a conscious way, pushing this paradigm shift as far as it will benefit us.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁觅柔完成签到,获得积分10
2秒前
喜悦发布了新的文献求助10
2秒前
CipherSage应助racill采纳,获得10
2秒前
许安发布了新的文献求助10
3秒前
02完成签到,获得积分10
3秒前
3秒前
小颂关注了科研通微信公众号
3秒前
科研通AI5应助whh123采纳,获得10
4秒前
zhang1119完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
nnnick完成签到,获得积分0
6秒前
MQhhh完成签到,获得积分10
7秒前
MinQi应助岳小龙采纳,获得10
7秒前
白垩纪完成签到,获得积分10
8秒前
支雨泽发布了新的文献求助10
8秒前
osmanthus应助忧郁觅柔采纳,获得10
8秒前
SYLH应助坚强雪碧采纳,获得10
9秒前
9秒前
ewyzero应助Clovis33采纳,获得10
9秒前
默默的皮牙子应助Clovis33采纳,获得10
9秒前
北冰石完成签到,获得积分10
9秒前
七漆发布了新的文献求助100
10秒前
11秒前
jl发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
执着的紫易应助kk采纳,获得10
14秒前
anbiii发布了新的文献求助10
14秒前
惠飞薇完成签到 ,获得积分10
15秒前
123发布了新的文献求助10
15秒前
南瓜汤完成签到,获得积分10
15秒前
17秒前
十二发布了新的文献求助50
17秒前
18秒前
章访曼发布了新的文献求助10
18秒前
英俊的铭应助极品小亮采纳,获得10
18秒前
珂珂发布了新的文献求助10
18秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820938
求助须知:如何正确求助?哪些是违规求助? 3363863
关于积分的说明 10425692
捐赠科研通 3082312
什么是DOI,文献DOI怎么找? 1695498
邀请新用户注册赠送积分活动 815147
科研通“疑难数据库(出版商)”最低求助积分说明 768982