亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing

墨水池 生物材料 机器学习 计算机科学 人工智能 3D打印 3d打印 材料科学 模板 纳米技术 算法 生物医学工程 工程类 复合材料 语音识别
作者
Hongyi Chen,Yuanchang Liu,Stavroula Balabani,Ryuji Hirayama,Jie Huang
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:6 被引量:47
标识
DOI:10.34133/research.0197
摘要

Three-dimensional (3D) printing is emerging as a transformative technology for biomedical engineering. The 3D printed product can be patient-specific by allowing customizability and direct control of the architecture. The trial-and-error approach currently used for developing the composition of printable inks is time- and resource-consuming due to the increasing number of variables requiring expert knowledge. Artificial intelligence has the potential to reshape the ink development process by forming a predictive model for printability from experimental data. In this paper, we constructed machine learning (ML) algorithms including decision tree, random forest (RF), and deep learning (DL) to predict the printability of biomaterials. A total of 210 formulations including 16 different bioactive and smart materials and 4 solvents were 3D printed, and their printability was assessed. All ML methods were able to learn and predict the printability of a variety of inks based on their biomaterial formulations. In particular, the RF algorithm has achieved the highest accuracy (88.1%), precision (90.6%), and F1 score (87.0%), indicating the best overall performance out of the 3 algorithms, while DL has the highest recall (87.3%). Furthermore, the ML algorithms have predicted the printability window of biomaterials to guide the ink development. The printability map generated with DL has finer granularity than other algorithms. ML has proven to be an effective and novel strategy for developing biomaterial formulations with desired 3D printability for biomedical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
12秒前
17秒前
20秒前
CherylZhao完成签到,获得积分10
24秒前
29秒前
岁和景明完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
49秒前
56秒前
1分钟前
1分钟前
poki完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Mei应助冷静大米采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
FashionBoy应助oleskarabach采纳,获得10
3分钟前
3分钟前
3分钟前
某某某完成签到,获得积分10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Mei完成签到,获得积分10
4分钟前
4分钟前
香蕉觅云应助哈哈哈采纳,获得10
4分钟前
4分钟前
冷静大米完成签到,获得积分10
4分钟前
5分钟前
冷静大米发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
顺心蜜粉应助紧张的书本采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204801
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629