Scientific machine learning for modeling and simulating complex fluids

计算机科学 本构方程 灵活性(工程) 人工智能 数学 有限元法 工程类 统计 结构工程
作者
Kyle R. Lennon,Gareth H. McKinley,James W. Swan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (27) 被引量:19
标识
DOI:10.1073/pnas.2304669120
摘要

The formulation of rheological constitutive equations—models that relate internal stresses and deformations in complex fluids—is a critical step in the engineering of systems involving soft materials. While data-driven models provide accessible alternatives to expensive first-principles models and less accurate empirical models in many engineering disciplines, the development of similar models for complex fluids has lagged. The diversity of techniques for characterizing non-Newtonian fluid dynamics creates a challenge for classical machine learning approaches, which require uniformly structured training data. Consequently, early machine-learning based constitutive equations have not been portable between different deformation protocols or mechanical observables. Here, we present a data-driven framework that resolves such issues, allowing rheologists to construct learnable models that incorporate essential physical information, while remaining agnostic to details regarding particular experimental protocols or flow kinematics. These scientific machine learning models incorporate a universal approximator within a materially objective tensorial constitutive framework. By construction, these models respect physical constraints, such as frame-invariance and tensor symmetry, required by continuum mechanics. We demonstrate that this framework facilitates the rapid discovery of accurate constitutive equations from limited data and that the learned models may be used to describe more kinematically complex flows. This inherent flexibility admits the application of these “digital fluid twins” to a range of material systems and engineering problems. We illustrate this flexibility by deploying a trained model within a multidimensional computational fluid dynamics simulation—a task that is not achievable using any previously developed data-driven rheological equation of state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joanne完成签到 ,获得积分10
刚刚
执着乐双完成签到,获得积分10
1秒前
guishouyu完成签到,获得积分10
3秒前
001完成签到,获得积分10
4秒前
轩仔完成签到 ,获得积分10
4秒前
lh完成签到,获得积分10
5秒前
5秒前
Foura完成签到,获得积分10
5秒前
等待的代容完成签到,获得积分10
6秒前
6秒前
xiaoyuanyuan发布了新的文献求助10
10秒前
10秒前
未来可期发布了新的文献求助10
13秒前
嘻嘻完成签到 ,获得积分10
15秒前
16秒前
小陈完成签到,获得积分10
17秒前
xiaoyuanyuan完成签到,获得积分10
18秒前
zzzllove完成签到 ,获得积分10
20秒前
机智咖啡豆完成签到 ,获得积分10
20秒前
鹿子完成签到 ,获得积分10
22秒前
23秒前
23秒前
寒冷丹雪完成签到,获得积分10
23秒前
威fly完成签到,获得积分10
24秒前
惜曦完成签到 ,获得积分10
24秒前
25秒前
资山雁完成签到 ,获得积分10
28秒前
stop here完成签到,获得积分10
28秒前
31秒前
红油曲奇完成签到 ,获得积分10
32秒前
ke科研小白完成签到,获得积分10
33秒前
www完成签到 ,获得积分10
33秒前
36秒前
39秒前
踏实谷蓝完成签到 ,获得积分10
39秒前
骤世界完成签到 ,获得积分10
42秒前
猪猪女孩发布了新的文献求助10
42秒前
轩辕剑身完成签到,获得积分10
43秒前
雪山飞完成签到,获得积分10
44秒前
魔幻的慕梅完成签到 ,获得积分10
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788426
求助须知:如何正确求助?哪些是违规求助? 3333744
关于积分的说明 10263363
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511