已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fourier ptychographic microscopy image enhancement with bi-modal deep learning

计算机科学 人工智能 光学(聚焦) 显微镜 光学 计算机视觉 图像处理 显微镜 样品(材料) 图像(数学) 物理 热力学
作者
Lyes Bouchama,Bernadette Dorizzi,Marc THELLIER,Jacques Klossa,Yaneck Gottesman
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (7): 3172-3172 被引量:10
标识
DOI:10.1364/boe.489776
摘要

Digital pathology based on a whole slide imaging system is about to permit a major breakthrough in automated diagnosis for rapid and highly sensitive disease detection. High-resolution FPM (Fourier ptychographic microscopy) slide scanners delivering rich information on biological samples are becoming available. They allow new effective data exploitation for efficient automated diagnosis. However, when the sample thickness becomes comparable to or greater than the microscope depth of field, we report an observation of undesirable contrast change of sub-cellular compartments in phase images around the optimal focal plane, reducing their usability. In this article, a bi-modal U-Net artificial neural network (i.e., a two channels U-Net fed with intensity and phase images) is trained to reinforce specifically targeted sub-cellular compartments contrast for both intensity and phase images. The procedure used to construct a reference database is detailed. It is obtained by exploiting the FPM reconstruction algorithm to explore images around the optimal focal plane with virtual Z-stacking calculations and selecting those with adequate contrast and focus. By construction and once trained, the U-Net is able to simultaneously reinforce targeted cell compartment visibility and compensate for any focus imprecision. It is efficient over a large field of view at high resolution. The interest of the approach is illustrated considering the use-case of Plasmodium falciparum detection in blood smear where improvement in the detection sensitivity is demonstrated without degradation of the specificity. Post-reconstruction FPM image processing with such U-Net and its training procedure is general and applicable to demanding biological screening applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
预买桂花完成签到 ,获得积分10
1秒前
dxc完成签到 ,获得积分10
2秒前
2秒前
Gigi发布了新的文献求助10
4秒前
7秒前
喵喵发布了新的文献求助10
8秒前
kunkun发布了新的文献求助10
8秒前
852应助wrr采纳,获得10
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
jason应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
12秒前
14秒前
华仔应助cs采纳,获得10
15秒前
einspringen发布了新的文献求助10
15秒前
carryxu完成签到,获得积分10
15秒前
17秒前
Hairee发布了新的文献求助10
18秒前
19秒前
斯文败类应助einspringen采纳,获得10
20秒前
自信的坤完成签到,获得积分10
21秒前
小王发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522020
求助须知:如何正确求助?哪些是违规求助? 4613246
关于积分的说明 14537956
捐赠科研通 4550886
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446341