Smart Home Energy Management: VAE-GAN Synthetic Dataset Generator and Q-Learning

计算机科学 杠杆(统计) 智能电网 能源管理 能源消耗 机器学习 数据挖掘 人工智能 能量(信号处理) 工程类 数学 统计 电气工程
作者
Mina Razghandi,Hao Zhou,Melike Erol‐Kantarci,Damla Turgut
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 1562-1573 被引量:19
标识
DOI:10.1109/tsg.2023.3288824
摘要

In recent years, there has been a growing interest in academia and industry in the analysis of electrical consumption in residential buildings and the implementation of smart home energy management systems (HEMS) to reduce household energy usage and costs. HEMS have been designed to emulate the statistical and functional characteristics of real smart grids. However, a major challenge in this research area is the limited availability of publicly accessible datasets. To address this challenge and further leverage the potential of artificial HEMS applications, it is crucial to develop time series that accurately represent diverse operating conditions of synthetic systems. This paper introduces a novel approach based on the combination of variational auto-encoder-generative adversarial network (VAE-GAN) techniques to generate time-series data of energy consumption in smart homes. Additionally, we investigate the performance of the generative model when integrated with a Q-learning based HEMS. The effectiveness of the Q-learning based HEMS is assessed through online experiments using real-world smart home data. To evaluate the quality of the generated dataset, we employ various metrics including Kullback–Leibler (KL) divergence, maximum mean discrepancy (MMD), and the Wasserstein distance, which quantify the disparities between probability distributions of the real and synthetic data. Our experimental results demonstrate that the synthetic data generated by VAE-GAN closely aligns with the distribution of real data. Furthermore, we demonstrate that the utilization of the generated data facilitates the training of a more efficient Q-learning based HEMS, surpassing the performance achieved with datasets generated using baseline approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的从雪完成签到,获得积分10
1秒前
herdwind完成签到,获得积分10
3秒前
4秒前
4秒前
8秒前
荔枝发布了新的文献求助10
8秒前
12秒前
传奇3应助小何采纳,获得10
12秒前
17秒前
17秒前
18秒前
xiao完成签到,获得积分10
18秒前
18秒前
风趣的碧琴完成签到,获得积分10
20秒前
慕青应助眯眯眼的世界采纳,获得10
20秒前
星辰大海应助清爽的孤萍采纳,获得10
20秒前
Wuhuijing发布了新的文献求助10
22秒前
22秒前
科研通AI5应助奇点采纳,获得10
22秒前
科研小白发布了新的文献求助10
23秒前
啊哦发布了新的文献求助10
26秒前
wy.he应助G2023na采纳,获得20
26秒前
hanhanhan发布了新的文献求助10
26秒前
wanci应助平常的不评采纳,获得10
27秒前
科研小白完成签到,获得积分10
29秒前
XXGG完成签到 ,获得积分10
29秒前
30秒前
30秒前
32秒前
迷路先生完成签到,获得积分10
32秒前
善学以致用应助dildil采纳,获得10
33秒前
34秒前
荔枝发布了新的文献求助10
35秒前
36秒前
NexusExplorer应助坚强的严青采纳,获得10
36秒前
科研通AI5应助hanhanhan采纳,获得10
36秒前
坚强的严青完成签到,获得积分20
40秒前
奇点发布了新的文献求助10
41秒前
感动樱给吴若魔的求助进行了留言
41秒前
科研通AI5应助傢誠采纳,获得10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814481
求助须知:如何正确求助?哪些是违规求助? 3358577
关于积分的说明 10396143
捐赠科研通 3075886
什么是DOI,文献DOI怎么找? 1689593
邀请新用户注册赠送积分活动 813087
科研通“疑难数据库(出版商)”最低求助积分说明 767504