Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress

高光谱成像 残余物 人工智能 深度学习 计算机科学 偏最小二乘回归 人工神经网络 机器学习 回归 循环神经网络 模式识别(心理学) 数据挖掘 数学 统计 算法
作者
S.K. Yu,Jiangchuan Fan,Xianju Lu,Weiliang Wen,Song Shao,Dong Liang,Xiaozeng Yang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108034-108034 被引量:9
标识
DOI:10.1016/j.compag.2023.108034
摘要

Efficiently analyzing the relationship between plant phenotypes, quality, and resistance remains challenging. In this study, deep learning models based on hyperspectral data and time-series phenotypes from the high-throughput plant phenotyping (HTPP) platform were proposed to predict quality attributes of lettuce under water stress, including SSC, pH value, nitrate (NO3–), and calcium (Ca2+). First, deep learning models were developed using the Inception module and raw hyperspectral data to non-destructively predict the above quality attributes. In addition, partial least squares regression (PLSR) and support vector regression (SVR) were used to develop prediction models to evaluate performance of the Inception module. Second, the residual and attention modules were implemented to enhance performance of the Inception module. Third, time-series phenotypes were fed into four recurrent neural networks (RNNs), such as TimeDistributed (TD), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BRNN) and combined with the optimal deep learning models based on hyperspectral data to enhance prediction precision. The optimal performance of the Inception-residual-attention-TD model was achieved with Rp2 of 0.8900 and 0.9435 for SSC and NO3–, respectively. The Inception-residual-TD model with Rp2 of 0.9583 provided the most accurate pH value prediction. With Rp2 of 0.8716, the Inception-attention-LSTM model provided the most accurate prediction of Ca2+. Meanwhile, the Inception-residual-TD model was used to detect water stress, producing an Accuracyp of 98.86%. The Inception-residual model based on pixel-wise hyperspectral data was used to visualize the spatial distribution of pH value, and the distribution map was used to detect early water stress. The results indicate that deep learning models can use hyperspectral data and time-series phenotypes to predict lettuce quality attributes and water stress in a non-destructive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助Smole采纳,获得10
刚刚
午夜煎饼完成签到 ,获得积分10
2秒前
积极乐观阳光开朗完成签到,获得积分10
4秒前
SciGPT应助灵巧的幻竹采纳,获得10
6秒前
9秒前
SciGPT应助52pry采纳,获得10
13秒前
Desole发布了新的文献求助10
14秒前
siyue完成签到 ,获得积分10
14秒前
apt完成签到 ,获得积分10
15秒前
喜悦的凝阳关注了科研通微信公众号
19秒前
19秒前
virgil发布了新的文献求助10
22秒前
23秒前
52pry发布了新的文献求助10
25秒前
Desole完成签到,获得积分20
29秒前
思源应助偷狗的小月亮采纳,获得10
30秒前
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
31秒前
林溪发布了新的文献求助200
31秒前
Mistletoe完成签到 ,获得积分10
31秒前
33秒前
hzh完成签到 ,获得积分10
33秒前
37秒前
37秒前
林屿溪完成签到,获得积分10
37秒前
38秒前
安青梅完成签到 ,获得积分10
40秒前
001发布了新的文献求助30
42秒前
Ma完成签到,获得积分10
42秒前
杨志坚完成签到 ,获得积分10
43秒前
笨笨芯发布了新的文献求助10
44秒前
科研通AI5应助smile采纳,获得10
49秒前
干净的翠琴完成签到 ,获得积分10
52秒前
决明完成签到,获得积分10
55秒前
汉堡包应助称心的可乐采纳,获得10
55秒前
001完成签到,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649