Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems

算法 适应性 优化算法 计算机科学 搜索算法 螳螂 秩(图论) 最优化问题 威尔科克森符号秩检验 数学优化 人工智能 数学 统计 生态学 组合数学 生物 曼惠特尼U检验
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mahinda Zidan,Mohammed Jameel,Mohamed Abouhawwash
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:415: 116200-116200 被引量:73
标识
DOI:10.1016/j.cma.2023.116200
摘要

This study presents a new nature-inspired optimization algorithm, namely the Mantis Search Algorithm (MSA), inspired by the unique hunting behavior and sexual cannibalism of praying mantises. In brief, MSA consists of three optimization stages, including the search for prey (exploration), attack prey (exploitation), and sexual cannibalism. Those operators are simulated using various mathematical models to effectively tackle optimization challenges across diverse search spaces. The performance of MSA is rigorously tested on fifty-two optimization problems and three real-world applications (five engineering design problems, and the parameter estimation problem of photovoltaic modules and fuel cells) to show its versatility and adaptability to different scenarios. To disclose the MSA’s superiority, it is compared to two categories from the rival optimizers: the first category involves well-established and highly-cited optimizers, like Differential evolution; and the second category contains recently-published algorithms, like African Vultures Optimization Algorithm. This comparison is conducted using several performance metrics, the Wilcoxon rank-sum test and the Friedman mean rank to disclose the MSA’s effectiveness and efficiency. The results of this comparison highlight the effectiveness of this new approach and its potential for future optimization applications. The source codes of the MSA algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/131833-mantis-search-algorithm-msa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan完成签到,获得积分10
刚刚
英姑应助一一采纳,获得10
1秒前
wangyujie发布了新的文献求助10
1秒前
小王完成签到,获得积分10
1秒前
2秒前
科研通AI5应助小黄人采纳,获得10
4秒前
DHMO完成签到,获得积分10
5秒前
科研通AI2S应助ZHAO采纳,获得10
5秒前
6秒前
8秒前
TaoTao不绝完成签到,获得积分10
8秒前
h123完成签到,获得积分20
9秒前
涵陌瑌发布了新的文献求助10
9秒前
sky完成签到,获得积分10
10秒前
QL驳回了shimhjy应助
11秒前
12秒前
甜蜜的大象完成签到,获得积分10
12秒前
renyi完成签到 ,获得积分10
12秒前
13秒前
深情安青应助沉默丹亦采纳,获得10
15秒前
SYLH应助文静翠风kop1采纳,获得30
15秒前
15秒前
潘善若发布了新的文献求助10
16秒前
向日葵完成签到,获得积分10
16秒前
listener完成签到,获得积分10
18秒前
18秒前
19秒前
小黄人发布了新的文献求助10
20秒前
搜集达人应助潘善若采纳,获得10
21秒前
传奇3应助徐子扬采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
aldehyde应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
核桃应助科研通管家采纳,获得30
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642