Data Fusion and Pattern Classification in Dynamical Systems Via Symbolic Time Series Analysis

计算机科学 传感器融合 背景(考古学) 人工智能 时间序列 系列(地层学) 动力系统理论 代表(政治) 概率逻辑 机器学习 人工神经网络 数据挖掘 自动机 模式识别(心理学) 古生物学 物理 量子力学 政治学 法学 生物 政治
作者
Xiangyi Chen,Asok Ray
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASM International]
卷期号:145 (9)
标识
DOI:10.1115/1.4062830
摘要

Abstract Symbolic time series analysis (STSA) plays an important role in the investigation of continuously evolving dynamical systems, where the capability to interpret the joint effects of multiple sensor signals is essential for adequate representation of the embedded knowledge. This technical brief develops and validates, by simulation, an STSA-based algorithm to make timely decisions on dynamical systems for information fusion and pattern classification from ensembles of multisensor time series data. In this context, one of the most commonly used methods has been neural networks (NN) in their various configurations; however, these NN-based methods may require large-volume data and prolonged computational time for training. An alternative feasible method is the STSA-based probabilistic finite state automata (PFSA), which has been shown in recent literature to require significantly less training data and to be much faster than NN for training and, to some extent, for testing. This technical brief reports a modification of the current PFSA methods to accommodate (possibly heterogeneous and not necessarily tightly synchronized) multisensor data fusion and (supervised learning-based) pattern classification in real-time. Efficacy of the proposed method is demonstrated by fusion of time series of position and velocity sensor data, generated from a simulation model of the forced Duffing equation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神华完成签到,获得积分20
刚刚
2秒前
神华发布了新的文献求助10
3秒前
董H完成签到,获得积分10
3秒前
916发布了新的文献求助10
4秒前
6秒前
6秒前
8秒前
9秒前
隐形曼青应助天天采纳,获得10
9秒前
整齐南莲发布了新的文献求助10
10秒前
10秒前
我要逆天发布了新的文献求助10
10秒前
zzf发布了新的文献求助10
11秒前
xuan2022发布了新的文献求助10
12秒前
neonsun完成签到,获得积分0
13秒前
李君然发布了新的文献求助10
15秒前
康阿蛋发布了新的文献求助10
15秒前
赘婿应助yjy采纳,获得10
17秒前
小药丸完成签到,获得积分10
17秒前
Amir完成签到,获得积分10
18秒前
整齐南莲完成签到,获得积分10
18秒前
852应助康阿蛋采纳,获得10
19秒前
zzf关闭了zzf文献求助
20秒前
深情安青应助916采纳,获得10
20秒前
李李完成签到,获得积分10
24秒前
24秒前
科研通AI5应助Wu采纳,获得10
25秒前
27秒前
27秒前
科研通AI5应助盛夏如花采纳,获得10
28秒前
yiyi发布了新的文献求助10
29秒前
YanK完成签到,获得积分10
29秒前
希格玻色子完成签到,获得积分10
29秒前
红绿灯的黄完成签到,获得积分10
29秒前
dilli完成签到 ,获得积分10
29秒前
30秒前
平常的毛豆应助神华采纳,获得10
31秒前
fssq发布了新的文献求助30
31秒前
沐雨橙风发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627