已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying potential Alzheimer's disease therapeutics through GSK-3β inhibition: A molecular docking and dynamics approach

对接(动物) 计算生物学 疾病 阿尔茨海默病 分子动力学 化学 神经科学 生物信息学 计算化学 生物 医学 内科学 护理部
作者
Yasaman Mohammadi,Reza Emadi,Arman Maddahi,Shiva Shirdel,Mohammad Hossein Morowvat
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:111: 108095-108095
标识
DOI:10.1016/j.compbiolchem.2024.108095
摘要

Emerging as a promising drug target for Alzheimer's disease (AD) therapy, glycogen synthase kinase 3β (GSK-3β) has garnered attention. This study sought to rigorously scrutinize a compendium of natural compounds retrieved from the ZINC database through pharmacodynamic experiments, employing a 1H-indazole-3-carboxamide (INDZ) scaffold, to identify compounds capable of inhibiting the GSK-3β protein. Utilizing a multi-step approach, the study involved pharmacophore analysis, followed by molecular docking to select five promising ligands for further investigation. Subsequently, ESMACS simulations were employed to assess the stability of the ligand-protein interactions. Evaluation of the binding modes and free energy of the ligands revealed that five compounds (2a-6a) exhibited crucial interactions with the active site residues. Furthermore, various methodologies, including hydrogen bond and clustering analyses, were utilized to ascertain their inhibitory potential and elucidate the factors contributing to ligand binding in the protein's active site. The findings from MMPBSA/GBSA analysis indicated that these five selected small molecules closely approached the IC50 value of the reference ligand (OH8), yielding energy values of −34.85, −32.58, −31.71, and −30.39 kcal/mol, respectively. Additionally, an assessment of the interactions using hydrogen bond and dynamic analyses delineated the effective binding of the ligands with the binding pockets in the protein. Through computational analysis, we obtained valuable insights into the molecular mechanisms of GSK-3β, aiding in the development of more potent inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吱吱发布了新的文献求助10
2秒前
Peng完成签到 ,获得积分10
5秒前
NINI完成签到 ,获得积分10
5秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研01应助科研通管家采纳,获得10
9秒前
Ak完成签到,获得积分0
9秒前
BYG发布了新的文献求助10
11秒前
lige完成签到 ,获得积分10
11秒前
蛋蛋姐姐完成签到,获得积分10
12秒前
12秒前
LBQ完成签到,获得积分10
14秒前
15秒前
chenpi发布了新的文献求助10
16秒前
因几完成签到 ,获得积分10
18秒前
木木林姐姐完成签到 ,获得积分10
18秒前
林宥嘉完成签到 ,获得积分10
19秒前
尾状叶完成签到 ,获得积分10
19秒前
小伏完成签到 ,获得积分10
21秒前
心碎的黄焖鸡完成签到 ,获得积分10
21秒前
科研通AI5应助任性雨安采纳,获得10
22秒前
22秒前
BYG完成签到,获得积分20
23秒前
赵钰完成签到,获得积分20
24秒前
29秒前
fx完成签到 ,获得积分10
29秒前
瀚海的雄狮完成签到,获得积分10
30秒前
能干的语芙完成签到 ,获得积分10
33秒前
Yy完成签到 ,获得积分10
34秒前
舒适的梦玉完成签到,获得积分10
35秒前
林钟完成签到,获得积分10
36秒前
meimei完成签到 ,获得积分10
36秒前
自然的衫完成签到 ,获得积分10
36秒前
星辰大海应助洁净问安采纳,获得10
37秒前
37秒前
美的很好很经典完成签到,获得积分10
38秒前
安妮完成签到 ,获得积分20
39秒前
百里一一发布了新的文献求助10
42秒前
英勇马里奥完成签到 ,获得积分10
44秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
Champagne & Shambles: The Arkwright's and the Country House in Crisis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837187
求助须知:如何正确求助?哪些是违规求助? 3379511
关于积分的说明 10509277
捐赠科研通 3099141
什么是DOI,文献DOI怎么找? 1706925
邀请新用户注册赠送积分活动 821329
科研通“疑难数据库(出版商)”最低求助积分说明 772536