已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessment and Application of Digital Museum Visitors' Emotional Experience Based on Virtual Reality Technology and Emotion Recognition Algorithm

虚拟现实 计算机科学 情绪识别 心理学 人工智能 人机交互 算法
作者
Jun An
出处
期刊:Presence: Teleoperators & Virtual Environments [MIT Press]
卷期号:33: 255-268 被引量:2
标识
DOI:10.1162/pres_a_00425
摘要

Abstract Each person will have a different emotional experience for the same scene or exhibit, which reduces the accuracy of emotional recognition and leads to the complexity of the evaluation of visitors' emotional experience in digital museums. In order to improve the user experience of digital museums, the evaluation and optimization methods of visitors' emotional experience of digital museums based on virtual reality (VR) technology and emotion recognition algorithm are studied. A spectrogram is generated according to the voice sent by tourists when they visit the digital museum, which is based on the CSWNet_CRNN emotion recognition depth learning model input, which evaluates tourists' emotional experience results and draws their emotional responses to digital museums. The visual and auditory features of the digital museum scene with positive emotional experience are extracted, respectively. Using VR technology, the extracted features are applied to each link of the digital museum scene content design, optimizing the digital museum VR scene and improving the digital museum experience. The experiment shows that the tourist emotion recognition accuracy of this method is high, and the emotion recognition accuracy of 300 random tourists can reach 100%. In terms of generating new scenes, the feature extraction results of this scene are consistent with the feature estimation of positive emotions by ordinary people. The use of extracted features to optimize the digital museum scene has better realism and detail accuracy, which can be favored by most people and promotes the sustainable development of digital museums.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
Orange应助方利俊采纳,获得10
6秒前
浮游应助Vicky采纳,获得10
7秒前
8秒前
zuoym发布了新的文献求助10
8秒前
Owen应助天真的小蜜蜂采纳,获得10
9秒前
9秒前
化学元素发布了新的文献求助10
9秒前
成就茗完成签到,获得积分10
10秒前
10秒前
简单发布了新的文献求助10
10秒前
乌拉拉啦啦啦完成签到 ,获得积分10
11秒前
海城好人完成签到,获得积分10
11秒前
Philip发布了新的文献求助30
13秒前
Mia完成签到,获得积分10
14秒前
Yat发布了新的文献求助10
15秒前
zuoym完成签到,获得积分10
15秒前
852应助Philip采纳,获得10
20秒前
Hello应助motopapi采纳,获得50
21秒前
风华正茂完成签到,获得积分10
22秒前
Robin完成签到,获得积分10
23秒前
26秒前
HarrisonChan完成签到,获得积分10
27秒前
李林鑫完成签到 ,获得积分10
30秒前
32秒前
平淡如天完成签到,获得积分10
36秒前
a涵发布了新的文献求助10
37秒前
38秒前
RXwang发布了新的文献求助10
39秒前
qinglongtsmc完成签到,获得积分10
42秒前
红烧肉耶完成签到 ,获得积分10
44秒前
46秒前
RXwang完成签到,获得积分10
47秒前
hhhh完成签到,获得积分10
49秒前
冬日暖阳完成签到,获得积分10
50秒前
51秒前
4466完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469866
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337422
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465272
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259