Time‐Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach

磁共振成像 乳腺癌 人工智能 医学 深度学习 新辅助治疗 人口 计算机科学 癌症 核医学 放射科 内科学 环境卫生
作者
Jialing Liu,Li Xu,Gang Wang,Weixiong Zeng,Hui Zeng,Chanjuan Wen,Weimin Xu,Zilong He,Genggeng Qin,Weiguo Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29405
摘要

Background Pathological complete response (pCR) is an essential criterion for adjusting follow‐up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short‐term memory (VGG‐LSTM) network using time‐series dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) for pCR identification in BC is unclear. Purpose To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG‐LSTM network. Study Type Retrospective. Population Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training ( n = 164) and validation set ( n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. Field Strength/Sequence 3‐T, T2‐weighted spin‐echo sequence imaging, and gradient echo DCE sequence imaging. Assessment Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG‐LSTM network to establish seven DL models using time‐series DCE‐MR images: pre‐NAC images (t0 model), early NAC images (t1 model), post‐NAC images (t2 model), pre‐NAC and early NAC images (t0 + t1 model), pre‐NAC and post‐NAC images (t0 + t2 model), pre‐NAC, early NAC and post‐NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. Statistical Tests The DeLong, Student's t ‐test, Mann–Whitney U, Chi‐squared, Fisher's exact, Hosmer–Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. Results Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. Data Conclusion The combined model that used time‐series DCE‐MR images, clinical features and imaging features shows promise for identifying pCR in BC. Level of Evidence 4. Technical Efficacy Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
2秒前
奔铂儿钯发布了新的文献求助20
3秒前
4秒前
5秒前
壮观的凝阳完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
似我发布了新的文献求助10
8秒前
8秒前
猪皮恶人发布了新的文献求助10
9秒前
谷遇完成签到,获得积分10
9秒前
糖优优完成签到,获得积分10
10秒前
111发布了新的文献求助10
12秒前
略略略完成签到,获得积分10
13秒前
迷路的芝麻完成签到 ,获得积分10
14秒前
一一完成签到 ,获得积分10
14秒前
昵称发布了新的文献求助10
16秒前
深情安青应助河堤采纳,获得10
17秒前
梁小氓完成签到 ,获得积分10
17秒前
18秒前
22秒前
思源应助应应采纳,获得10
22秒前
波尔完成签到,获得积分20
24秒前
HHH发布了新的文献求助10
24秒前
默默的无敌完成签到,获得积分10
26秒前
猪皮恶人发布了新的文献求助10
27秒前
28秒前
科研小白完成签到,获得积分10
31秒前
河堤发布了新的文献求助10
32秒前
33秒前
34秒前
高兴孤萍发布了新的文献求助10
40秒前
Shuai完成签到,获得积分10
44秒前
45秒前
46秒前
46秒前
李健应助Snoopy采纳,获得10
46秒前
50秒前
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328583
关于积分的说明 10237312
捐赠科研通 3043737
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130