Differentiating Microplastics from Natural Particles in Aqueous Suspensions Using Flow Cytometry with Machine Learning

微塑料 光养 沉积物 环境科学 生物系统 人工智能 环境化学 纳米技术 化学 计算机科学 材料科学 地质学 生物 古生物学 生物化学 光合作用
作者
Xinjie Wang,Yang Li,Alexandra Kröll,Denise M. Mitrano
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (23): 10240-10251 被引量:9
标识
DOI:10.1021/acs.est.4c00304
摘要

Microplastics (MPs) in natural waters are heterogeneously mixed with other natural particles including algal cells and suspended sediments. An easy-to-use and rapid method for directly measuring and distinguishing MPs from other naturally present colloids in the environment would expedite analytical workflows. Here, we established a database of MP scattering and fluorescence properties, either alone or in mixtures with natural particles, by stain-free flow cytometry. The resulting high-dimensional data were analyzed using machine learning approaches, either unsupervised (e.g., viSNE) or supervised (e.g., random forest algorithms). We assessed our approach in identifying and quantifying model MPs of diverse sizes, morphologies, and polymer compositions in various suspensions including phototrophic microorganisms, suspended biofilms, mineral particles, and sediment. We could precisely quantify MPs in microbial phototrophs and natural sediments with high organic carbon by both machine learning models (identification accuracies over 93%), although it was not possible to distinguish between different MP sizes or polymer compositions. By testing the resulting method in environmental samples through spiking MPs into freshwater samples, we further highlight the applicability of the method to be used as a rapid screening tool for MPs. Collectively, this workflow can be easily applied to a diverse set of samples to assess the presence of MPs in a time-efficient manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
CodeCraft应助hyw010724采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
1313131发布了新的文献求助10
2秒前
2秒前
文静的寒松完成签到,获得积分10
3秒前
PDE完成签到,获得积分10
3秒前
Orange应助lu1222采纳,获得10
3秒前
4秒前
Hello应助yan艳采纳,获得10
4秒前
桐桐应助未央采纳,获得10
5秒前
帝国之花完成签到,获得积分10
5秒前
FashionBoy应助朱大帅采纳,获得10
5秒前
蓝雁发布了新的文献求助10
5秒前
无心的热狗完成签到,获得积分10
6秒前
yilin发布了新的文献求助10
6秒前
稳重向南发布了新的文献求助10
6秒前
稳重向南发布了新的文献求助10
6秒前
稳重向南发布了新的文献求助10
6秒前
傻傻的尔蓝完成签到,获得积分10
6秒前
3361702776发布了新的文献求助10
7秒前
8秒前
今后应助学霸土豆采纳,获得10
8秒前
归尘发布了新的文献求助10
8秒前
Yuling发布了新的文献求助10
9秒前
9秒前
10秒前
李爱国应助iuhgnor采纳,获得10
10秒前
香蕉觅云应助杰卿采纳,获得10
10秒前
12秒前
12秒前
加油应助3361702776采纳,获得10
12秒前
13秒前
Gbn发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
轨迹应助iuhgnor采纳,获得20
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281