Mobile-YOLO: An accurate and efficient three-stage cascaded network for online fiberglass fabric defect detection

计算机科学 阶段(地层学) 人工智能 计算机视觉 古生物学 生物
作者
Junfeng Li,Xinjian Kang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:134: 108690-108690 被引量:7
标识
DOI:10.1016/j.engappai.2024.108690
摘要

The tolerance for different defects in the production process of fiberglass fabric varies. For acceptable defects, only relevant information needs to be recorded and printed, while for intolerable defects, the loom needs to be stopped promptly for handling. To address the issue of inefficient production of fiberglass fabric due to this situation, this paper proposes a task-modularized cascade network model for quality inspection of fiberglass fabric. The three stages cascaded detection network is composed of the improved MobilenetV3-small and the enhanced You Only Look Once v8 Nano (YOLOv8n). For MobilenetV3_small, the Squeeze- and-Excitation(SE) module in the Block layer with a 5 × 5 convolutional kernel is replaced with the Efficient Channel Attention (ECA) mechanism, enhancing channel information while making the model more lightweight. For YOLOv8n, a Global Attention Module (GAM) is added to the network, enhancing the ability to capture global information of input data, making the model more perceptual. Additionally, a Similarity Attention Module (SimAM) is added between the neck and head networks, enabling the network to better capture relevant information in the images, improving the quality of feature maps and enhancing network performance. Finally, a large number of defect images of fiberglass fabric were collected from an industrial site, and different datasets for the three stages were created. Numerous experiments were conducted, and when using all three stages for detection, the accuracy rate reaches 99.4%, with a parameter count of 16.8M and Frames Per Second (FPS) of 186. The cascade network has been successfully applied in the industrial field of fiberglass fabric and meets industrial production requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Notch信号完成签到,获得积分10
2秒前
张潇潇发布了新的文献求助10
2秒前
JamesPei应助烤番薯采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
4秒前
huohaha发布了新的文献求助10
4秒前
踏实傲菡完成签到,获得积分10
5秒前
7秒前
深情安青应助yynicheng采纳,获得10
7秒前
Becky发布了新的文献求助10
7秒前
7秒前
可爱的函函应助ZCY采纳,获得10
9秒前
火星上凤完成签到,获得积分10
10秒前
hdx完成签到 ,获得积分10
11秒前
AHa发布了新的文献求助10
11秒前
WANGCHU发布了新的文献求助10
12秒前
13秒前
搜集达人应助铀氪锂锂采纳,获得10
13秒前
bill完成签到,获得积分10
13秒前
huangdq6完成签到 ,获得积分10
14秒前
科研小白发布了新的文献求助10
18秒前
18秒前
善学以致用应助YYYYWZ采纳,获得10
19秒前
Desly发布了新的文献求助10
21秒前
哈哈哈完成签到,获得积分20
24秒前
脑洞疼应助WANGCHU采纳,获得10
25秒前
25秒前
FashionBoy应助迷路中的骑手采纳,获得10
27秒前
huohaha完成签到,获得积分10
28秒前
30秒前
fanstic330发布了新的文献求助10
31秒前
Hello应助Desly采纳,获得10
31秒前
Tao驳回了充电宝应助
31秒前
zxt完成签到,获得积分20
32秒前
虚心的飞飞完成签到 ,获得积分10
33秒前
34秒前
35秒前
英俊的铭应助666采纳,获得10
35秒前
chelsea完成签到,获得积分20
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303