亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mobile-YOLO: An accurate and efficient three-stage cascaded network for online fiberglass fabric defect detection

计算机科学 阶段(地层学) 人工智能 计算机视觉 古生物学 生物
作者
Junfeng Li,Xinjian Kang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:134: 108690-108690 被引量:28
标识
DOI:10.1016/j.engappai.2024.108690
摘要

The tolerance for different defects in the production process of fiberglass fabric varies. For acceptable defects, only relevant information needs to be recorded and printed, while for intolerable defects, the loom needs to be stopped promptly for handling. To address the issue of inefficient production of fiberglass fabric due to this situation, this paper proposes a task-modularized cascade network model for quality inspection of fiberglass fabric. The three stages cascaded detection network is composed of the improved MobilenetV3-small and the enhanced You Only Look Once v8 Nano (YOLOv8n). For MobilenetV3_small, the Squeeze- and-Excitation(SE) module in the Block layer with a 5 × 5 convolutional kernel is replaced with the Efficient Channel Attention (ECA) mechanism, enhancing channel information while making the model more lightweight. For YOLOv8n, a Global Attention Module (GAM) is added to the network, enhancing the ability to capture global information of input data, making the model more perceptual. Additionally, a Similarity Attention Module (SimAM) is added between the neck and head networks, enabling the network to better capture relevant information in the images, improving the quality of feature maps and enhancing network performance. Finally, a large number of defect images of fiberglass fabric were collected from an industrial site, and different datasets for the three stages were created. Numerous experiments were conducted, and when using all three stages for detection, the accuracy rate reaches 99.4%, with a parameter count of 16.8M and Frames Per Second (FPS) of 186. The cascade network has been successfully applied in the industrial field of fiberglass fabric and meets industrial production requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jia完成签到,获得积分10
刚刚
48da完成签到,获得积分20
1秒前
lmz发布了新的文献求助10
2秒前
小小发布了新的文献求助10
6秒前
6秒前
shen完成签到 ,获得积分10
7秒前
爆米花应助宇宙超人007008采纳,获得10
8秒前
lmz完成签到,获得积分20
8秒前
9秒前
HMYX完成签到 ,获得积分10
9秒前
Limerencia完成签到,获得积分10
10秒前
Owen应助lmz采纳,获得10
10秒前
12秒前
852应助科研通管家采纳,获得10
12秒前
江江江发布了新的文献求助10
14秒前
15秒前
Akim应助shinn采纳,获得10
15秒前
科目三应助姜茶采纳,获得10
16秒前
小滕同学完成签到,获得积分10
17秒前
落落发布了新的文献求助10
19秒前
19秒前
meredith0571完成签到,获得积分10
21秒前
梨凉发布了新的文献求助10
22秒前
23秒前
共享精神应助shinn采纳,获得10
29秒前
落落完成签到,获得积分10
36秒前
852应助onelastkiss采纳,获得10
38秒前
40秒前
懦弱的沛芹完成签到,获得积分10
44秒前
shinn发布了新的文献求助10
47秒前
852应助宇宙超人007008采纳,获得10
48秒前
onelastkiss完成签到,获得积分10
50秒前
今后应助周亚平采纳,获得10
51秒前
DODO完成签到,获得积分10
53秒前
Owen应助shinn采纳,获得10
55秒前
57秒前
58秒前
壮观大炮完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112