Advanced deep learning algorithm for instant discriminating of tea leave stress symptoms by smartphone-based detection

计算机科学 即时 深度学习 人工智能 压力(语言学) 算法 即时消息 机器学习 生物 万维网 食品科学 语言学 哲学
作者
Zhenxiong Huang,Mostafa Gouda,Sitan Ye,Xuechen Zhang,Siyi Li,Tiancheng Wang,Jin Zhang,Xinbei Song,Xiaoli Li,Yong He
出处
期刊:Plant Physiology and Biochemistry [Elsevier BV]
卷期号:212: 108769-108769 被引量:2
标识
DOI:10.1016/j.plaphy.2024.108769
摘要

The primary challenges in tea production under multiple stress exposures have negatively affected its global market sustainability, so introducing an infield fast technique for monitoring tea leaves' stresses has tremendous urgent needs. Therefore, this study aimed to propose an efficient method for the detection of stress symptoms based on a portable smartphone with deep learning models. Firstly, a database containing over 10,000 images of tea garden canopies in complex natural scenes was developed, which included healthy (no stress) and three types of stress (tea anthracnose (TA), tea blister blight (TB) and sunburn (SB)). Then, YOLOv5m and YOLOv8m algorithms were adapted to discriminate the four types of stress symptoms; where the YOLOv8m algorithm achieved better performance in the identification of healthy leaves (98%), TA (92.0%), TB (68.4%) and SB (75.5%). Furthermore, the YOLOv8m algorithm was used to construct a model for differentiation of disease severity of TA, and a satisfactory result was obtained with the accuracy of mild, moderate, and severe TA infections were 94%, 96%, and 91%, respectively. Besides, we found that CNN kernels of YOLOv8m could efficiently extract the texture characteristics of the images at layer 2, and these characteristics can clearly distinguish different types of stress symptoms. This makes great contributions to the YOLOv8m model to achieve high-precision differentiation of four types of stress symptoms. In conclusion, our study provided an effective system to achieve low-cost, high-precision, fast, and infield diagnosis of tea stress symptoms in complex natural scenes based on smartphone and deep learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大男完成签到,获得积分10
1秒前
jingyi完成签到,获得积分10
2秒前
3秒前
心系天下完成签到,获得积分10
3秒前
AaronDP完成签到,获得积分10
4秒前
4秒前
乐正映雁发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
tutu完成签到,获得积分10
9秒前
火山蜗牛完成签到,获得积分10
9秒前
胖飞飞发布了新的文献求助10
9秒前
jzmupyj完成签到,获得积分10
11秒前
神外王001完成签到 ,获得积分10
11秒前
热呃呃呃完成签到,获得积分10
11秒前
leo发布了新的文献求助10
12秒前
陆吉发布了新的文献求助10
12秒前
tym完成签到 ,获得积分10
13秒前
123发布了新的文献求助10
13秒前
默存完成签到,获得积分10
16秒前
Ningxin完成签到,获得积分10
17秒前
涂涂完成签到 ,获得积分10
18秒前
科研通AI5应助wangchf采纳,获得10
19秒前
昏睡的半鬼完成签到 ,获得积分10
20秒前
小太阳完成签到,获得积分10
22秒前
乐正映雁完成签到,获得积分10
23秒前
wanci应助123采纳,获得10
25秒前
jzmulyl完成签到,获得积分10
25秒前
27秒前
汉堡包应助科研通管家采纳,获得10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
123应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845653
求助须知:如何正确求助?哪些是违规求助? 3387906
关于积分的说明 10551095
捐赠科研通 3108559
什么是DOI,文献DOI怎么找? 1712917
邀请新用户注册赠送积分活动 824546
科研通“疑难数据库(出版商)”最低求助积分说明 774877