Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling

糖胺聚糖 中枢神经系统 体外 材料科学 生物相容性材料 生物医学工程 纳米技术 神经科学 细胞生物学 生物化学 医学 化学 生物
作者
Austin D. Evans,Negin Pournoori,Emmi Saksala,Oommen P. Oommen
出处
期刊:Biomaterials [Elsevier BV]
卷期号:309: 122629-122629 被引量:4
标识
DOI:10.1016/j.biomaterials.2024.122629
摘要

Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
米缸发布了新的文献求助10
3秒前
CodeCraft应助惠子采纳,获得10
3秒前
zxy发布了新的文献求助10
8秒前
争当科研巨匠完成签到,获得积分10
12秒前
无花果应助nicelily采纳,获得10
14秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
16秒前
w_p5577完成签到,获得积分20
16秒前
21秒前
qizhixu发布了新的文献求助10
23秒前
YGYANG发布了新的文献求助10
24秒前
29秒前
NexusExplorer应助qizhixu采纳,获得10
30秒前
落后友灵完成签到,获得积分20
31秒前
L.C.完成签到,获得积分10
33秒前
小马甲应助YGYANG采纳,获得10
34秒前
Archer完成签到,获得积分10
36秒前
wuniuniu发布了新的文献求助10
36秒前
科研通AI2S应助达助采纳,获得10
37秒前
wwww完成签到 ,获得积分10
45秒前
木子苏完成签到 ,获得积分10
45秒前
hjx完成签到 ,获得积分10
46秒前
xiaowang应助魔幻半仙采纳,获得10
49秒前
51秒前
51秒前
落后友灵关注了科研通微信公众号
51秒前
54秒前
harmy完成签到,获得积分10
55秒前
米缸完成签到,获得积分10
55秒前
锅炉发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322512
关于积分的说明 10210474
捐赠科研通 3037840
什么是DOI,文献DOI怎么找? 1666936
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044