ADL Simulation with Abnormal Behavior of Mild Cognitive Impairment Sufferers

认知障碍 计算机科学 认知 心理学 神经科学
作者
Ju-Hsuan Li,Hsuan-Chih Wang,Chia-Tai Chan
标识
DOI:10.1109/icasi60819.2024.10547794
摘要

With the increase in the proportion of the elderly population in recent years, age-related health issues have gradually caught more attention. One of them is dementia, which leads to the elderly people having difficulty performing activities of daily life (ADL). There is a phase of mild cognitive impairment (MCI) before the disease progresses to dementia. In the MCI stage, the cognitive deficits are not severe enough to influence ADL. Nevertheless, the disease is progressive and as cognitive deficits accumulate, patients may have increasing problems performing daily activities. Long-term ADL monitoring and abnormal behavior detection can detect early symptoms in incubation periods and assist clinical to evaluate the risk and symptoms of related diseases for early diagnosis, prevention and intervention. However, the collection of real-world ADL sequences is scarce because of the considerable resources and manpower required for long-term monitoring. This study designs an ADL simulator for MCI based on the theory of human behavior and demands. Firstly, the ADL simulator estimates activity attributes and time parameters that is associated with the behavior intention and requirements. After that, the ADL instances are sorted by the order of start time estimated in time parameters. Additionally, the intrinsic structure of activities and the context between sub-activities are important clues for capturing the cognitive status. Therefore, this work also simulates sub-activity-related abnormal behaviors of MCI. The evaluation of ADL simulator shows that the simulated ADL sequences are similar to real-world behaviors and the results demonstrate the feasibility of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助doudou采纳,获得30
刚刚
丘比特应助科研八戒采纳,获得10
1秒前
香蕉觅云应助lyfsci采纳,获得10
2秒前
斯文败类应助纪玉采纳,获得10
2秒前
健壮的怜烟完成签到,获得积分10
3秒前
3秒前
Ashley完成签到,获得积分10
3秒前
潇湘飞云发布了新的文献求助10
3秒前
汉堡包应助蔡继海采纳,获得10
4秒前
4秒前
思源应助我要发sci采纳,获得10
5秒前
5秒前
6秒前
2233完成签到,获得积分10
6秒前
完美世界应助艾妮吗采纳,获得10
8秒前
清风发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
9秒前
明月清风完成签到,获得积分10
10秒前
Shuhe_Gong发布了新的文献求助30
10秒前
sky发布了新的文献求助10
11秒前
11秒前
隐形曼青应助怕黑傲珊采纳,获得10
12秒前
LING发布了新的文献求助10
12秒前
12秒前
12秒前
15秒前
李健的粉丝团团长应助111采纳,获得10
15秒前
微风发布了新的文献求助10
15秒前
彭林发布了新的文献求助10
16秒前
17秒前
蔡继海发布了新的文献求助10
17秒前
18秒前
Go完成签到,获得积分10
19秒前
大模型应助Aiman采纳,获得10
19秒前
zpq完成签到,获得积分10
19秒前
20秒前
南山完成签到,获得积分20
20秒前
Jake完成签到,获得积分10
20秒前
MDHuang完成签到,获得积分10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836489
求助须知:如何正确求助?哪些是违规求助? 3378770
关于积分的说明 10506036
捐赠科研通 3098421
什么是DOI,文献DOI怎么找? 1706505
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431