硼
阳极
材料科学
硅
纳米颗粒
锂(药物)
合金
电池(电)
锂离子电池
离子
纳米技术
冶金
化学工程
无机化学
化学
电极
工程类
医学
功率(物理)
物理
有机化学
物理化学
量子力学
内分泌学
作者
Gregory F. Pach,Pashupati R. Adhikari,Joseph Quinn,Chongmin Wang,Avtar Singh,Ankit Verma,Andrew M. Colclasure,Jae Ho Kim,Glenn Teeter,Gabriel M. Veith,Nathan R. Neale,Gerard M. Carroll
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2024-05-02
卷期号:9 (6): 2492-2499
被引量:9
标识
DOI:10.1021/acsenergylett.4c00856
摘要
Silicon's potential as a lithium-ion battery (LIB) anode is hindered by the reactivity of the lithium silicide (LixSi) interface. This study introduces an innovative approach by alloying silicon with boron, creating boron/silicon (BSi) nanoparticles synthesized via plasma-enhanced chemical vapor deposition. These nanoparticles exhibit altered electronic structures as evidenced by optical, structural, and chemical analysis. Integrated into LIB anodes, BSi demonstrates outstanding cycle stability, surpassing 1000 lithiation and delithiation cycles with minimal capacity fade or impedance growth. Detailed electrochemical and microscopic characterization reveal very little SEI growth through 1000 cycles, which suggests that electrolyte degradation is virtually nonexistent. This unconventional strategy offers a promising avenue for high-performance LIB anodes with the potential for rapid scale-up, marking a significant advancement in silicon anode technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI