亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Artificial Intelligence in Triage in Hospital Emergency Departments: A Scoping Review

急诊分诊台 医疗急救 医学
作者
Samantha Tyler,Matthew Olis,Nicole Aust,L. Patel,L. M. Simon,Catherine Triantafyllidis,Vijay Patel,Dong Won Lee,Brendan Ginsberg,Hiba Ahmad,Robin J. Jacobs
出处
期刊:Cureus [Cureus, Inc.]
被引量:30
标识
DOI:10.7759/cureus.59906
摘要

The integration of artificial intelligence (AI) and machine learning (ML) in healthcare has become a major point of interest and raises the question of its impact on the emergency department (ED) triaging process. AI's capacity to emulate human cognitive processes coupled with advancements in computing has shown positive outcomes in various aspects of healthcare but little is known about the use of AI in triaging patients in ED. AI algorithms may allow for earlier diagnosis and intervention; however, overconfident answers may present dangers to patients. The purpose of this review was to explore comprehensively recently published literature regarding the effect of AI and ML in ED triage and identify research gaps. A systemized search was conducted in September 2023 using the electronic databases EMBASE, Ovid MEDLINE, and Web of Science. To meet inclusion criteria, articles had to be peer-reviewed, written in English, and based on primary data research studies published in US journals 2013-2023. Other criteria included 1) studies with patients needing to be admitted to hospital EDs, 2) AI must have been used when triaging a patient, and 3) patient outcomes must be represented. The search was conducted using controlled descriptors from the Medical Subject Headings (MeSH) that included the terms "artificial intelligence" OR "machine learning" AND "emergency ward" OR "emergency care" OR "emergency department" OR "emergency room" AND "patient triage" OR "triage" OR "triaging." The search initially identified 1,142 citations. After a rigorous, systemized screening process and critical appraisal of the evidence, 29 studies were selected for the final review. The findings indicated that 1) ML models consistently demonstrated superior discrimination abilities compared to conventional triage systems, 2) the integration of AI into the triage process yielded significant enhancements in predictive accuracy, disease identification, and risk assessment, 3) ML accurately determined the necessity of hospitalization for patients requiring urgent attention, and 4) ML improved resource allocation and quality of patient care, including predicting length of stay. The suggested superiority of ML models in prioritizing patients in the ED holds the potential to redefine triage precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
26秒前
32秒前
iwaking发布了新的文献求助10
1分钟前
1分钟前
wangermazi完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
笨笨青筠完成签到 ,获得积分10
3分钟前
雪白小丸子完成签到,获得积分10
4分钟前
4分钟前
qqq完成签到,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
123完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
轩辕山槐发布了新的文献求助10
6分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
矛头蝮应助cc采纳,获得10
9分钟前
9分钟前
9分钟前
皮皮虾发布了新的文献求助30
9分钟前
9分钟前
Orange应助刻苦秋尽采纳,获得10
9分钟前
yys完成签到,获得积分10
9分钟前
10分钟前
科研通AI2S应助皮皮虾采纳,获得30
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4184518
求助须知:如何正确求助?哪些是违规求助? 3720207
关于积分的说明 11723702
捐赠科研通 3398899
什么是DOI,文献DOI怎么找? 1864944
邀请新用户注册赠送积分活动 922482
科研通“疑难数据库(出版商)”最低求助积分说明 834058