亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on digital twin-assisted dual-channel parallel convolutional neural network-transformer rolling bearing fault diagnosis method

卷积神经网络 方位(导航) 变压器 计算机科学 人工智能 断层(地质) 模式识别(心理学) 地质学 工程类 电气工程 地震学 电压
作者
Wang Deng-Long,Yonghua Li,Chong Lu,Zhihui Men,Xing Zhao
标识
DOI:10.1177/09544054241290573
摘要

The existing data-driven fault diagnosis methods face some significant problems in practical applications. Many traditional methods rely on a large number of high-quality labeled data for training, but in the industrial environment, the actual fault data obtained is often limited and unbalanced. This data scarcity seriously limits the diagnostic ability of the model and is prone to insufficient diagnostic accuracy. In addition, the data-driven method has a strong dependence on data, and it is prone to misjudgment in the face of complex environments such as noise interference and equipment state changes. These problems jointly restrict the application effect of fault diagnosis methods in industrial actual scenarios. Based on this, this paper proposes a new method of rolling bearing fault diagnosis based on digital twin technology and improved convolutional neural network (CNN)-Transformer deep learning model. Firstly, the geometric characteristics and motion mechanism of rolling bearings are analyzed in depth, and a high-fidelity virtual twin model is established. A balanced simulation data set is generated by numerical simulation. Secondly, we improve the traditional CNN, combined with the Transformer deep learning framework, to enhance the ability of the network to extract features. By performing wavelet transform on the test data obtained from the rolling bearing acceleration test bench and the simulation data generated by the twin model, a dual-channel signal of parallel convolution is formed, and a fault diagnosis model based on dual-channel parallel CNN-Transformer is constructed. Finally, the effectiveness of the proposed method is verified by ablation experiments. The results show that the proposed method can accurately and efficiently identify different rolling bearing fault modes and has superior diagnostic performance. At the same time, the model can also be further extended to related fields to provide new ideas and technical references for fault diagnosis of other mechanical equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助大胆的茗茗采纳,获得10
9秒前
科研通AI2S应助王冠军采纳,获得10
1分钟前
小蘑菇应助xu采纳,获得10
2分钟前
3分钟前
深情安青应助等待安莲采纳,获得10
3分钟前
xu发布了新的文献求助10
3分钟前
3分钟前
等待安莲发布了新的文献求助10
3分钟前
哭泣灯泡应助科研通管家采纳,获得10
4分钟前
忧伤的绍辉完成签到 ,获得积分10
5分钟前
糖醋里脊加醋完成签到 ,获得积分10
5分钟前
景行行止完成签到 ,获得积分10
6分钟前
6分钟前
健康的大船完成签到 ,获得积分10
7分钟前
Nichols完成签到,获得积分10
7分钟前
8分钟前
Ara发布了新的文献求助10
8分钟前
9分钟前
科研通AI5应助盼盼采纳,获得10
9分钟前
9分钟前
执着乐双发布了新的文献求助10
9分钟前
xun完成签到,获得积分20
9分钟前
聪明静柏完成签到 ,获得积分10
9分钟前
10分钟前
盼盼发布了新的文献求助10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
盼盼完成签到,获得积分10
11分钟前
牧紊完成签到 ,获得积分10
11分钟前
Aaron完成签到 ,获得积分0
11分钟前
善良的剑通完成签到 ,获得积分10
11分钟前
柯语雪完成签到 ,获得积分10
12分钟前
英姑应助damturexu采纳,获得10
12分钟前
Orange应助科研通管家采纳,获得10
12分钟前
13分钟前
schnappi发布了新的文献求助10
14分钟前
爆米花应助schnappi采纳,获得10
14分钟前
14分钟前
楠俊完成签到,获得积分10
14分钟前
楠俊发布了新的文献求助10
14分钟前
斯文败类应助科研通管家采纳,获得10
14分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792529
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10282043
捐赠科研通 3053532
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468