Computational thrombosis modeling based on multiphase porous media theory for prognostic evaluation of aortic dissection after stenting

主动脉夹层 物理 血栓形成 医学 多孔介质 心脏病学 多孔性 内科学 放射科 主动脉 岩土工程 工程类
作者
Xiaofan Li,Shuaitong Zhang,Xuehuan Zhang,Xuyang Zhang,Yuting Yang,Yao Xu,Chiyu Xie,Jiang Xiong,Duanduan Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0243589
摘要

Accurately and rapidly predicting the occurrence and progression of false lumen thrombosis in patients undergoing thoracic endovascular aortic repair (TEVAR) is crucial for optimizing patient recovery. Traditional models for predicting false lumen thrombosis often lack the ability to capture phase interface changes, and their complex parameters and algorithms result in a long computation time. This study introduces a multiphase porous media approach that can accurately and rapidly predict thrombus formation in aortic dissection patients at different postoperative stages. The approach employed the Darcy–Brinkman–Stokes equation to model the interaction between the thrombotic and fluid phases and incorporated a novel porosity equation to explicitly capture phase interface dynamics. Additionally, the hemodynamic parameters associated with thrombus formation were updated to enhance the physical accuracy of the algorithm while reducing its computational complexity. Using patient-specific models derived from computed tomography angiography datasets, our algorithm demonstrated excellent predictive performance in real patients. The predicted thrombus morphology in the third and sixth months postoperatively closely matched the actual imaging data, with discrepancies in thrombus volume remaining within a ±10% range at each postoperative stage. Moreover, the algorithm significantly improved computational convergence, reducing the computation time to 30 minutes and enhancing the computational efficiency by 80% compared to traditional methods. By integrating the porous media framework, this approach offers a valuable tool for rapid clinical diagnosis and the prediction of post-TEVAR recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
轻抚女高脸颊完成签到,获得积分10
2秒前
自信南霜完成签到,获得积分10
4秒前
lym完成签到,获得积分20
5秒前
CodeCraft应助明亮的落地窗采纳,获得10
5秒前
NexusExplorer应助背侧丘脑采纳,获得20
6秒前
6秒前
albertwang完成签到 ,获得积分10
6秒前
7秒前
哈哈发布了新的文献求助10
7秒前
诺基亚发布了新的文献求助10
7秒前
青春完成签到,获得积分10
9秒前
万能图书馆应助Laity采纳,获得10
9秒前
王丰亿发布了新的文献求助10
10秒前
Frank完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
xcc发布了新的文献求助10
13秒前
青春发布了新的文献求助10
15秒前
nakl完成签到,获得积分10
15秒前
旭滟完成签到,获得积分10
17秒前
llw完成签到,获得积分20
17秒前
希望天下0贩的0应助蓝华采纳,获得10
18秒前
倒霉蛋完成签到,获得积分10
18秒前
19秒前
汉堡包应助lym采纳,获得10
19秒前
小二郎应助积极的思真采纳,获得10
21秒前
科研通AI5应助旭滟采纳,获得10
22秒前
xcc完成签到,获得积分10
24秒前
背侧丘脑发布了新的文献求助20
24秒前
26秒前
dreamon完成签到,获得积分10
27秒前
hangongyishan完成签到,获得积分10
27秒前
30秒前
自由飞阳完成签到,获得积分10
31秒前
31秒前
自信睿渊发布了新的文献求助10
31秒前
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4220943
求助须知:如何正确求助?哪些是违规求助? 3754469
关于积分的说明 11804309
捐赠科研通 3418107
什么是DOI,文献DOI怎么找? 1876047
邀请新用户注册赠送积分活动 929637
科研通“疑难数据库(出版商)”最低求助积分说明 838159